Hajra Azeem, Amjad Ali, Muhammad A. Zeshan, Waqas Ashraf, Muhammad U. Ghani, Ashara Sajid, Muhammad Sajid


The application of synthetic pesticides viz fungicide, bactericide, and nematicide to control the harmful phytopathogens that have a terrible impact on all living environments. Therefore, the developing countries have banned the further application of pesticides and usage of an alternate approach than synthetic pesticides, which have no side effect on plant health, human health, and on the living environmentthat are more cost-effective and eco-friendly behavior. The term biological control through beneficial microorganisms is an alternative approach to control the phytopathogens, which causes severe loss to important crops worldwide. This review article has focused on the antagonistic behavior of bacteria against fungal plant pathogens, bacteria, and nematodes. The bacterial species, especially Bacillus, Pseudomonas, and Streptomyces applied as antagonists against bundles of phytopathogens by a different mode of action. The antagonistic bacteria produce different antimicrobial compounds to suppress the growth of targeted pathogens. To suppress the growth of pre and post harvested fungal and bacterial pathogens, the biocontrol (BC) bacteria produce siderophore, antibiosis, parasitism, competition for space and nutrients, and biofilm formation. Induction of resistance in host plants also generated by biocontrol bacteria through the production of Indole acetic acid (IAA) and activities of the effector genes in host. The commercial products prepared by using the antagonistic bacteria such as Cryptococcus albidus, Pseudomonassyringae, Bacillus subtilis, Candida oleophila’ and  Aureobasidium pullulans used to control the different phyto-fungal pathogens. This review article covers the three-parts, in the first part, we discussed the antagonistic potential of bacteria against fungal pathogens, in the second part, we discuss the antagonistic potential of bacteria against bacterial pathogens and third part contain the antagonistic potential of bacteria against plant-parasitic nematodes.


Biocontrol agent, antagonistic bacteria, biofilm formation, siderophore, antibiosis, commercial product

Full Text:



Achari, G. A. and R. Ramesh. 2019. Colonization of Eggplant by Endophytic Bacteria Antagonistic to Ralstonia solanacearum, the Bacterial Wilt Pathogen. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89: 585-593.

Adam, M., H. Heuer and J. Hallmann. 2014. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PloS one, 9: e90402.

Adrees, H., M. S. Haider, T. Anjum and W. Akram. 2019. Inducing systemic resistance in cotton plants against charcoal root rot pathogen using indigenous rhizospheric bacterial strains and chemical elicitors. Crop protection, 115: 75-83.

Agarwal, M., S. Dheeman, R. C. Dubey, P. Kumar, D. K. Maheshwari and V. K. Bajpai. 2017. Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench. Microbiological research, 205: 40-47.

Alsohiby, F. A. A., S. Yahya and A. A. Humaid. 2016. Screening of soil isolates of bacteria for antagonistic activity against plant pathogenic fungi. PSM Microbiology, 1: 5-9.

Ambrico, A. and M. Trupo. 2017. Efficacy of cell free supernatant from Bacillus subtilis ET-1, an Iturin A producer strain, on biocontrol of green and gray mold. Postharvest Biology and Technology, 134: 5-10.

Andreolli, M., G. Zapparoli, E. Angelini, G. Lucchetta, S. Lampis and G. Vallini. 2019. Pseudomonas protegens MP12: A plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens. Microbiological research, 219: 123-131.

Angmo, K., A. Kumari and T. C. Bhalla. 2016. Antagonistic activities of lactic acid bacteria from fermented foods and beverage of Ladakh against Yersinia enterocolitica in refrigerated meat. Food bioscience, 13: 26-31.

Arafat, K. H., S. A. Hanan and M. R. Abd-El-Aziz. 2015. Antibacterial activity of antagonistic bacteria and plant extract on Erwinia amylovora the pathogen of fire blight disease in Egypt. International Journal of Phytopathology, 4: 73-79.

Asari, S., S. Matzén, M. A. Petersen, S. Bejai and J. Meijer. 2016. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiology Ecology, 92: fiw070.

Atibalentja, N., G. Noel and L. Domier. 2000. Phylogenetic position of the North American isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, as inferred from 16S rDNA sequence analysis. International Journal of Systematic and Evolutionary Microbiology, 50: 605-613.

Bahadou, S. A., A. Ouijja, A. Karfach, A. Tahiri and R. Lahlali. 2018. New potential bacterial antagonists for the biocontrol of fire blight disease (Erwinia amylovora) in Morocco. Microbial pathogenesis, 117: 7-15.

Bais, H. P., R. Fall and J. M. Vivanco. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant physiology, 134: 307-319.

Barrett, A. J., J. F. Woessner and N. D. Rawlings. 2012. Handbook of Proteolytic Enzymes, Volume 1. Elsevier.

Beauregard, P. B., Y. Chai, H. Vlamakis, R. Losick and R. Kolter. 2013. Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences, 110: 1621-1630.

Bianciotto, V., S. Andreotti, R. Balestrini, P. Bonfante and S. Perotto. 2001. Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Molecular plant-microbe interactions, 14: 255-260.

Blachinsky, D., J. Antonov, A. Bercovitz, B. El-ad, K. Feldman, A. Husid, M. Lazare, N. Marcov, I. Shamai and S. Droby. 2007. Commercial applications of shemer for the control of pre-and post-harvest diseases. IOBC WPRS BULLETIN, 30: 75.

Branda, S. S., J. E. González-Pastor, S. Ben-Yehuda, R. Losick and R. Kolter. 2001. Fruiting body formation by Bacillus subtilis. Proceedings of the National Academy of Sciences, 98: 11621-11626.

Calvo, H., P. Marco, D. Blanco, R. Oria and M. Venturini. 2017. Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food microbiology, 63: 101-110.

Carmona-Hernandez, S., J. J. Reyes-Pérez, R. G. Chiquito-Contreras, G. Rincon-Enriquez, C. R. Cerdan-Cabrera and L. G. Hernandez-Montiel. 2019. Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy, 9: 121.

Carroll, C. S. and M. M. Moore. 2018. Ironing out siderophore biosynthesis: a review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases. Critical Reviews in Biochemistry and Molecular Biology, 53: 356-381.

Castillo, J. D., J. M. Vivanco and D. K. Manter. 2017. Bacterial microbiome and nematode occurrence in different potato agricultural soils. Microbial ecology, 74: 888-900.

Chen, L., J. Heng, S. Qin and K. Bian. 2018. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PLoS One, 13: e0198560.

Chen, X., Y. Zhang, X. Fu, Y. Li and Q. Wang. 2016. Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biology and Technology, 115: 113-121.

Chen, Y., Q. Kong and Y. Liang. 2019. Three newly identified peptides from Bacillus megaterium strongly inhibit the growth and aflatoxin B1 production of Aspergillus flavus. Food Control, 95: 41-49.

Chen, Y., F. Yan, Y. Chai, H. Liu, R. Kolter, R. Losick and J. h. Guo. 2013. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental microbiology, 15: 848-864.

Chi, M., G. Li, Y. Liu, G. Liu, M. Li, X. Zhang, Z. Sun, Y. Sui and J. Liu. 2015. Increase in antioxidant enzyme activity, stress tolerance and biocontrol efficacy of Pichia kudriavzevii with the transition from a yeast-like to biofilm morphology. Biological Control, 90: 113-119.

Colagiero, M., L. C. Rosso, D. Catalano, L. Schena and A. Ciancio. 2020. Response of Tomato Rhizosphere Bacteria to Root-Knot Nematodes, Fenamiphos and Sampling Time Shows Differential Effects on Low Level Taxa. Frontiers in microbiology, 11: 390.

Cordova-Albores, L., E. S. Zapotitla, M. Ríos, L. Barrera-Necha, M. Hernández-López and S. Bautista-Baños. 2016. Microscopic study of the morphology and metabolic activity of Fusarium oxysporum f. sp. gladioli treated with Jatropha curcas oil and derivatives. Journal of microscopy and ultrastructure, 4: 28-35.

da Silva, R. S., B. L. Moutinho, D. R. dos Santos, I. Vasconcelo‐Rodrigues, V. Talamini, M. F. Fernandes and R. P. Fernandes. 2018. Using antagonistic soil bacteria and their cell‐free filtrates to control the black rot pathogen Xanthomonas campestris pv. campestris. Journal of Phytopathology, 166: 494-501.

Davies, K., M. Fargette, G. Balla, A. Daudi, R. Duponnois, S. R. Gowen, T. Mateille, M. Phillips, A. Sawadogo and C. Trivino. 2001. Cuticle heterogeneity as exhibited by Pasteuria spore attachment is not linked to the phylogeny of parthenogenetic root-knot nematodes (Meloidogyne spp.). Parasitology, 122: 111.

De Melo Pereira, G., M. Beux, M. Pagnoncelli, V. Soccol, C. Rodrigues and C. Soccol. 2016. Isolation, selection and evaluation of antagonistic yeasts and lactic acid bacteria against ochratoxigenic fungus Aspergillus westerdijkiae on coffee beans. Letters in applied microbiology, 62: 96-101.

Demoz, B. T. and L. Korsten. 2006. Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biological Control, 37: 68-74.

Di Francesco, A., C. Martini and M. Mari. 2016. Biological control of postharvest diseases by microbial antagonists: how many mechanisms of action? European Journal of Plant Pathology, 145: 711-717.

Djaya, L., N. Istifadah, S. Hartati and I. M. Joni. 2019. In vitro study of plant growth promoting rhizobacteria (PGPR) and endophytic bacteria antagonistic to Ralstonia solanacearum formulated with graphite and silica nano particles as a biocontrol delivery system (BDS). Biocatalysis and Agricultural Biotechnology, 19: 101153.

Drehe, I., E. Simonetti and J. A. Ruiz. 2018. Contribution of the siderophores pyoverdine and enantio-pyochelin to fitness in soil of Pseudomonas protegens Pf-5. Current microbiology, 75: 1560-1565.

Droby, S., M. Wisniewski, N. Teixidó, D. Spadaro and M. H. Jijakli. 2016. The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology, 122: 22-29.

Etesami, H. and H. A. Alikhani. 2017. Evaluation of gram-positive rhizosphere and endophytic bacteria for biological control of fungal rice (Oryzia sativa L.) pathogens. European Journal of Plant Pathology, 147: 7-14.

Feichtmayer, J., L. Deng and C. Griebler. 2017. Antagonistic microbial interactions: contributions and potential applications for controlling pathogens in the aquatic systems. Frontiers in microbiology, 8: 2192.

Ferraz, H. G. M., R. S. Resende, P. C. Moreira, P. R. Silveira, E. A. Milagres, J. R. Oliveira and F. Á. Rodrigues. 2015. Antagonistic rhizobacteria and jasmonic acid induce resistance against tomato bacterial spot. Bragantia: 0-0.

Fialho, M. B., M. H. D. d. Moraes, A. R. Tremocoldi and S. F. Pascholati. 2011. Potential of antimicrobial volatile organic compounds to control Sclerotinia sclerotiorum in bean seeds. Pesquisa Agropecuária Brasileira, 46: 137-142.

Fravel, D. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol., 43: 337-359.

Fujiwara, K., Y. Iida, N. Someya, M. Takano, J. Ohnishi, F. Terami and M. Shinohara. 2016. Emergence of Antagonism Against the Pathogenic Fungus Fusarium oxysporum by Interplay Among Non‐Antagonistic Bacteria in a Hydroponics Using Multiple Parallel Mineralization. Journal of Phytopathology, 164: 853-862.

Geng, C., X. Nie, Z. Tang, Y. Zhang, J. Lin, M. Sun and D. Peng. 2016. A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins. Scientific reports, 6: 1-12.

Getha, K. and S. Vikineswary. 2002. Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f. sp. cubense race 4: indirect evidence for the role of antibiosis in the antagonistic process. Journal of Industrial Microbiology and Biotechnology, 28: 303-310.

Golonka, R., B. San Yeoh and M. Vijay-Kumar. 2019. The iron tug-of-war between bacterial siderophores and innate immunity. Journal of innate immunity, 11: 249-262.

Gotor-Vila, A., N. Teixidó, C. Casals, R. Torres, A. De Cal, B. Guijarro and J. Usall. 2017. Biological control of brown rot in stone fruit using Bacillus amyloliquefaciens CPA-8 under field conditions. Crop Protection, 102: 72-80.

Gu, Q., Y. Yang, Q. Yuan, G. Shi, L. Wu, Z. Lou, R. Huo, H. Wu, R. Borriss and X. Gao. 2017. Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Applied and environmental microbiology, 83.

Guevara-Avendaño, E., A. A. Bejarano-Bolívar, A.-L. Kiel-Martínez, M. Ramírez-Vázquez, A. Méndez-Bravo, E. A. von Wobeser, D. Sánchez-Rangel, J. A. Guerrero-Analco, A. Eskalen and F. Reverchon. 2019. Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Microbiological research, 219: 74-83.

Guo, H., T. M. Nolan, G. Song, S. Liu, Z. Xie, J. Chen, P. S. Schnable, J. W. Walley and Y. Yin. 2018. FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana. Current Biology, 28: 3316-3324. e3316.

Hacquard, S., S. Spaepen, R. Garrido-Oter and P. Schulze-Lefert. 2017. Interplay between innate immunity and the plant microbiota. Annual review of Phytopathology, 55: 565-589.

Haggag, W. and S. Timmusk. 2008. Colonization of peanut roots by biofilm‐forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. Journal of applied microbiology, 104: 961-969.

Haidar, R., J. Roudet, O. Bonnard, M. C. Dufour, M. F. Corio-Costet, M. Fert, T. Gautier, A. Deschamps and M. Fermaud. 2016. Screening and modes of action of antagonistic bacteria to control the fungal pathogen Phaeomoniella chlamydospora involved in grapevine trunk diseases. Microbiological research, 192: 172-184.

Hasan, M. F., M. A. Islam and B. Sikdar. 2018. Biological Control of Bacterial Leaf Spot Disease of Papaya (Carica papaya) through Antagonistic Approaches using Medicinal Plants Extracts and Soil Bacteria. Int. J. Pure App. Biosci, 6: 1-11.

Hastuti, R. D., Y. Lestari, A. Suwanto and R. SARASWATI. 2012. Endophytic Streptomyces spp. as biocontrol agents of rice bacterial leaf blight pathogen (Xanthomonas oryzae pv. oryzae). HAYATI Journal of Biosciences, 19: 155-162.

Hernandez-Montiel, L. G., E. D. Gutierrez-Perez, B. Murillo-Amador, S. Vero, R. G. Chiquito-Contreras and G. Rincon-Enriquez. 2018. Mechanisms employed by Debaryomyces hansenii in biological control of anthracnose disease on papaya fruit. Postharvest Biology and Technology, 139: 31-37.

Hoang, H., L. H. Tran, T. H. Nguyen, D. A. T. Nguyen, H. H. T. Nguyen, N. B. Pham, P. Q. Trinh, T. de Boer, A. Brouwer and H. H. Chu. 2020. Occurrence of endophytic bacteria in Vietnamese Robusta coffee roots and their effects on plant parasitic nematodes. Symbiosis, 80: 75-84.

Holert, J., E. Cardenas, L. H. Bergstrand, E. Zaikova, A. S. Hahn, S. J. Hallam and W. W. Mohn. 2018. Metagenomes reveal global distribution of bacterial steroid catabolism in natural, engineered, and host environments. MBio, 9: 02345-02317.

Hong, C. E., S. H. Jo, J. Y. Moon, J.-S. Lee, S.-Y. Kwon and J. M. Park. 2015. Isolation of novel leaf-inhabiting endophytic bacteria in Arabidopsis thaliana and their antagonistic effects on phytophathogens. Plant Biotechnology Reports, 9: 451-458.

Hu, H. Q., X. S. Li and H. He. 2010. Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biological control, 54: 359-365.

Jamalizadeh, M., H. Etebarian, H. Aminian and A. Alizadeh. 2011. A review of mechanisms of action of biological control organisms against post‐harvest fruit spoilage. EPPO Bulletin, 41: 65-71.

James, D. and S. Mathew. 2015. Antagonistic activity of endophytic microorganisms against bacterial wilt disease of tomato.

Janisiewicz, W. and D. Peterson. 2004. Susceptibility of the stem pull area of mechanically harvested apples to blue mold decay and its control with a biocontrol agent. Plant Disease, 88: 662-664.

Janisiewicz, W. J. and L. Korsten. 2002. Biological control of postharvest diseases of fruits. Annual review of phytopathology, 40: 411-441.

Jatala, P. 1986. Biological control of plant-parasitic nematodes. Annual review of phytopathology, 24: 453-489.

Jensen, B. D., S. M. Massomo, I. S. Swai, J. Hockenhull and S. B. Andersen. 2005. Field evaluation for resistance to the black rot pathogen Xanthomonas campestris pv. campestris in cabbage (Brassica oleracea). European journal of plant pathology, 113: 297-308.

Jiang, C.-H., F. Wu, Z.-Y. Yu, P. Xie, H.-J. Ke, H.-W. Li, Y.-Y. Yu and J.-H. Guo. 2015. Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli. Microbiological research, 170: 95-104.

Jin, P., H. Wang, Z. Tan, Z. Xuan, G. Y. Dahar, Q. X. Li, W. Miao and W. Liu. 2020. Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz. Pesticide Biochemistry and Physiology, 163: 102-107.

Junaid, J. M., N. A. Dar, T. A. Bhat, A. H. Bhat and M. A. Bhat. 2013. Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. International Journal of Modern Plant & Animal Sciences, 1: 39-57.

Kaufman, G., W. Liu, D. M. Williams, Y. Choo, M. Gopinadhan, N. Samudrala, R. Sarfati, E. C. Yan, L. Regan and C. O. Osuji. 2017. Flat Drops, Elastic Sheets, and Microcapsules by Interfacial Assembly of a Bacterial Biofilm Protein, BslA. Langmuir, 33: 13590-13597.

Kheirandish, Z. and B. Harighi. 2015. Evaluation of bacterial antagonists of Ralstonia solanacearum, causal agent of bacterial wilt of potato. Biological Control, 86: 14-19.

Khoa, N. Ð., N. Ð. N. Giàu and T. Q. Tuấn. 2016. Effects of Serratia nematodiphila CT-78 on rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biological Control, 103: 1-10.

Kim, Y. S., K. Balaraju and Y. Jeon. 2016. Effects of rhizobacteria Paenibacillus polymyxa APEC136 and Bacillus subtilis APEC170 on biocontrol of postharvest pathogens of apple fruits. Journal of Zhejiang University-SCIENCE B, 17: 931-940.

Kobayashi, K. and M. Iwano. 2012. BslA (YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Molecular microbiology, 85: 51-66.

Koenning, S., C. Overstreet, J. Noling, P. Donald, J. Becker and B. Fortnum. 1999. Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. Journal of nematology, 31: 587.

Köhl, J., R. Kolnaar and W. J. Ravensberg. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science, 10: 845.

Kowalska, J., D. Rożdżyński, D. Remlein-Starosta, L. Sas-Paszt and E. Malusá. 2012. Use of Cryptococcus albidus for controlling grey mould in the production and storage of organically grown strawberries. Journal of Plant Diseases and Protection, 119: 174-178.

Kumar, V., L. Jain, S. K. Jain, S. Chaturvedi and P. Kaushal. 2020. Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. South African Journal of Botany.

Layton, C., E. Maldonado, L. Monroy, L. C. C. Ramírez and L. C. S. Leal. 2011. Bacillus spp.; perspectiva de su efecto biocontrolador mediante antibiosis en cultivos afectados por fitopatógenos. Nova, 9: 177-187.

Lima, G., S. M. Sanzani, F. De Curtis and A. Ippolito. 2015. Biological control of postharvest diseases. Advances in Postharvest Fruit and Vegetables Technology; Wills, RBH, Golding, JB, Eds: 65-81.

Lin, F., Y. Xue, Z. Huang, M. Jiang, F. Lu, X. Bie, S. Miao and Z. Lu. 2019. Bacillomycin D inhibits growth of Rhizopus stolonifer and induces defense-related mechanism in cherry tomato. Applied microbiology and biotechnology, 103: 7663-7674.

Liu, H., L. C. Carvalhais, M. Crawford, E. Singh, P. G. Dennis, C. M. Pieterse and P. M. Schenk. 2017. Inner plant values: diversity, colonization and benefits from endophytic bacteria. Frontiers in microbiology, 8: 2552.

Lugtenberg, B. and F. Kamilova. 2009. Plant-growth-promoting rhizobacteria. Annual review of microbiology, 63: 541-556.

Luo, J., W. Xia, P. Cao, Z. a. Xiao, Y. Zhang, M. Liu, C. Zhan and N. Wang. 2019. Integrated transcriptome analysis reveals plant hormones jasmonic acid and salicylic acid coordinate growth and defense responses upon fungal infection in poplar. Biomolecules, 9: 12.

Maida, I., C. Chiellini, A. Mengoni, E. Bosi, F. Firenzuoli, M. Fondi and R. Fani. 2016. Antagonistic interactions between endophytic cultivable bacterial communities isolated from the medicinal plant E chinacea purpurea. Environmental microbiology, 18: 2357-2365.

Mankau, R. 1980. Biological control of nematode pests by natural enemies. Annual Review of Phytopathology, 18: 415-440.

Mankau, R., J. Imbriani and A. Bell. 1976. SEM observations on nematode cuticle penetration by Bacillus penetrans. Journal of Nematology, 8: 179.

Mendoza de Gives, P., K. G. Davies, M. Morgan and J. M. Behnke. 1999. Attachment tests of Pasteuria penetrans to the cuticle of plant and animal parasitic nematodes, free living nematodes and srf mutants of Caenorhabditis elegans. Parasitology, 73.

Monteiro, F. P., L. C. Ferreira, L. P. Pacheco and P. E. Souza. 2013. Antagonism of Bacillus subtilis against Sclerotinia sclerotiorum on Lactuca sativa. Journal of Agricultural Science, 5: 214.

Monteiro, L., R. d. L. R. Mariano and A. M. Souto-Maior. 2005. Antagonism of Bacillus spp. against Xanthomonas campestris pv. campestris. Brazilian Archives of Biology and Technology, 48: 23-29.

Mu, J., X. Li, J. Jiao, G. Ji, J. Wu, F. Hu and H. Li. 2017. Biocontrol potential of vermicompost through antifungal volatiles produced by indigenous bacteria. Biological Control, 112: 49-54.

Mun, B.-G., W.-H. Lee, S.-M. Kang, S.-U. Lee, S.-M. Lee, D. Y. Lee, M. Shahid, B.-W. Yun and I.-J. Lee. 2020. Streptomyces sp. LH 4 promotes plant growth and resistance against Sclerotinia sclerotiorum in cucumber via modulation of enzymatic and defense pathways. Plant and Soil: 1-17.

Nishida, M., T. Matsubara and N. Watanabe. 1965. Pyrrolnitrin, a new antifungal antibiotic Microbiological and toxicological observations. The Journal of Antibiotics, Series A, 18: 211-219.

Novinscak, A., V. J. Gadkar, D. L. Joly and M. Filion. 2016. Complete genome sequence of Pseudomonas brassicacearum LBUM300, a disease-suppressive bacterium with antagonistic activity toward fungal, oomycete, and bacterial plant pathogens. Genome Announcements, 4.

Nunes, C. A. 2012. Biological control of postharvest diseases of fruit. European Journal of Plant Pathology, 133: 181-196.

Ongena, M. and P. Jacques. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in microbiology, 16: 115-125.

Ostrowski, A., A. Mehert, A. Prescott, T. B. Kiley and N. R. Stanley-Wall. 2011. YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis. Journal of bacteriology, 193: 4821-4831.

Öztürk, L., T. Behmand, G. G. Avcı, R. Bozbuğa, M. Mirik and İ. H. Elekcioğlu. 2020. Survey of Pasteuria, the parasitic bacterial group to plant parasitic nematodes in Turkey. Egyptian Journal of Biological Pest Control, 30: 1-7.

Pusey, P., V. Stockwell, C. Reardon, T. Smits and B. Duffy. 2011. Antibiosis activity of Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple flower stigmas. Phytopathology, 101: 1234-1241.

Raaijmakers, J. M. and M. Mazzola. 2012. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual review of phytopathology, 50: 403-424.

Roberts, P., M. Momol, L. Ritchie, S. Olson, J. Jones and B. Balogh. 2008. Evaluation of spray programs containing famoxadone plus cymoxanil, acibenzolar-S-methyl, and Bacillus subtilis compared to copper sprays for management of bacterial spot on tomato. Crop Protection, 27: 1519-1526.

Romero, D., H. Vlamakis, R. Losick and R. Kolter. 2011. An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Molecular microbiology, 80: 1155-1168.

Rybakova, D., U. Wetzlinger, H. Müller and G. Berg. 2015. Complete genome sequence of Paenibacillus polymyxa strain Sb3-1, a soilborne bacterium with antagonistic activity toward plant pathogens. Genome announcements, 3.

Safdarpour, F. and G. Khodakaramian. 2019. Assessment of antagonistic and plant growth promoting activities of tomato endophytic bacteria in challenging with Verticillium dahliae under in-vitro and in-vivo conditions. Biological Journal of Microorganism, 7: 77-90.

Sajitha, K. and S. A. Dev. 2016. Quantification of antifungal lipopeptide gene expression levels in Bacillus subtilis B1 during antagonism against sapstain fungus on rubberwood. Biological Control, 96: 78-85.

Salerno, C. and M. Sagardoy. 2003. Antagonistic activity by" Bacillus subtilis" against" Xanthomonas campestris" pv." glycines" aunder controlled conditions. Spanish journal of agricultural research: 55-58.

Sarangi, T., S. Ramakrishnan and S. Nakkeeran. 2017. Antimicrobial Peptide Genes Present in Indigenous Isolates of Bacillus spp. Exhibiting Antimicrobical Properties. Int. J. Curr. Microbiol. App. Sci, 6: 1361-1369.

Sayre, R. M. and W. P. Wergin. 1977. Bacterial parasite of a plant nematode: morphology and ultrastructure. Journal of Bacteriology, 129: 1091-1101.

Schneider, S. M., E. N. Rosskopf, J. G. Leesch, D. O. Chellemi, C. T. Bull and M. Mazzola. 2003. United States Department of Agriculture—Agricultural Research Service research on alternatives to methyl bromide: pre‐plant and post‐harvest. Pest Management Science: formerly Pesticide Science, 59: 814-826.

Sebastien, M. and M. H. Jijakli. 2014. Pichia anomala and Candida oleophila in biocontrol of postharvest diseases of fruits: 20 years of fundamental and practical research, Post-harvest Pathology. Springer, pp. 111-122.

Seidl, V. 2008. Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biology Reviews, 22: 36-42.

Selin, C., R. Habibian, N. Poritsanos, S. N. Athukorala, D. Fernando and T. R. De Kievit. 2009. Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm formation. FEMS microbiology ecology, 71: 73-83.

Semeniuc, C. A., C. R. Pop and A. M. Rotar. 2017. Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. journal of food and drug analysis, 25: 403-408.

Shakeel, Q., A. Lyu, J. Zhang, M. Wu, G. Li, T. Hsiang and L. Yang. 2018. Biocontrol of Aspergillus flavus on peanut kernels using Streptomyces yanglinensis 3-10. Frontiers in Microbiology, 9: 1049.

Sharifazizi, M., B. Harighi and A. Sadeghi. 2017. Evaluation of biological control of Erwinia amylovora, causal agent of fire blight disease of pear by antagonistic bacteria. Biological Control, 104: 28-34.

Sharma, R., D. Singh and R. Singh. 2009. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological control, 50: 205-221.

Shivakumar, S., A. N. Karmali and C. Ruhimbana. 2014. Partial purification, characterization, and kinetic studies of a low-molecular-weight, alkali-tolerant chitinase enzyme from Bacillus subtilis JN032305, a potential biocontrol strain. Preparative Biochemistry and Biotechnology, 44: 617-632.

Shrestha, B. K., H. S. Karki, D. E. Groth, N. Jungkhun and J. H. Ham. 2016. Biological control activities of rice-associated Bacillus sp. strains against sheath blight and bacterial panicle blight of rice. PloS one, 11: e0146764.

Siddiqui, Z. and I. Mahmood. 1999. Role of bacteria in the management of plant parasitic nematodes: a review. Bioresource technology, 69: 167-179.

Soliman, G. M., H. H. Ameen, S. M. Abdel-Aziz and G. M. El-Sayed. 2019. In vitro evaluation of some isolated bacteria against the plant parasite nematode Meloidogyne incognita. Bulletin of the National Research Centre, 43: 171.

Spadaro, D. and S. Droby. 2016. Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology, 47: 39-49.

Stirling, G. R. 1991. Biological control of plant parasitic nematodes. CAB International.

Stoykov, Y. M., A. I. Pavlov and A. I. Krastanov. 2015. Chitinase biotechnology: production, purification, and application. Engineering in Life Sciences, 15: 30-38.

Subhalaxmi, R., R. Aran and P. Aniruddha. 2017. Nematicidal activity of Bacillus subtilis against root knot nematode Meloidogyne incognita (kofoid and white) chitwood in tomato. Environment and Ecology, 35: 469-473.

Taghavi, S., C. Garafola, S. Monchy, L. Newman, A. Hoffman, N. Weyens, T. Barac, J. Vangronsveld and D. van der Lelie. 2009. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Applied and environmental microbiology, 75: 748-757.

Tahir, H. A. S., Q. Gu, H. Wu, Y. Niu, R. Huo and X. Gao. 2017. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Scientific reports, 7: 1-15.

Tan, H., L. Cao, Z. He, G. Su, B. Lin and S. Zhou. 2006. Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World Journal of Microbiology and Biotechnology, 22: 1275-1280.

Teixidó, N., R. Torres, I. Viñas, M. Abadias and J. Usall. 2011. Biological control of postharvest diseases in fruit and vegetables, Protective Cultures, Antimicrobial Metabolites and Bacteriophages for Food and Beverage Biopreservation. Elsevier, pp. 364-402.

Terpilowska, S. and A. K. Siwicki. 2019. Cell cycle and transmembrane mitochondrial potential analysis after treatment with chromium (iii), iron (iii), molybdenum (iii) or nickel (ii) and their mixtures. Toxicology research, 8: 188-195.

Thokchom, E., D. Thakuria, M. C. Kalita, C. K. Sharma and N. C. Talukdar. 2017. Root colonization by host-specific rhizobacteria alters indigenous root endophyte and rhizosphere soil bacterial communities and promotes the growth of mandarin orange. European Journal of Soil Biology, 79: 48-56.

Thomas, P. and A. C. Sekhar. 2016. Effects due to rhizospheric soil application of an antagonistic bacterial endophyte on native bacterial community and its survival in soil: a case study with Pseudomonas aeruginosa from Banana. Frontiers in microbiology, 7: 493.

Thomashow, L. S. 2002. Antibiotic production by soil and rhizosphere microbes in situ. Manual of environmental microbiology.

Tian, B., J. Yang and K.-Q. Zhang. 2007. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS microbiology ecology, 61: 197-213.

Topalović, O., A. Elhady, J. Hallmann, K. R. Richert-Pöggeler and H. Heuer. 2019. Bacteria isolated from the cuticle of plant-parasitic nematodes attached to and antagonized the root-knot nematode Meloidogyne hapla. Scientific reports, 9: 1-13.

Torres, M. J., C. P. Brandan, G. Petroselli, R. Erra-Balsells and M. C. Audisio. 2016. Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Microbiological research, 182: 31-39.

Torres, R., C. Solsona, I. Viñas, J. Usall, P. Plaza and N. Teixidó. 2014. Optimization of packaging and storage conditions of a freeze‐dried P antoea agglomerans formulation for controlling postharvest diseases in fruit. Journal of applied microbiology, 117: 173-184.

Upreti, R. and P. Thomas. 2015. Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects. Frontiers in microbiology, 6: 255.

Usall, J., R. Torres and N. Teixido. 2016. Biological control of postharvest diseases on fruit: a suitable alternative? Current Opinion in Food Science, 11: 51-55.

Vagelas, I. and S. Gowen. 2012. Control of Fusarium oxysporum and root-knot nematodes (Meloidogyne spp.) with Pseudomonas oryzihabitans. Pak. J. Phytopathol, 24: 32-38.

Velázquez-Becerra, C., L. I. Macías-Rodríguez, J. López-Bucio, I. Flores-Cortez, G. Santoyo, C. Hernández-Soberano and E. Valencia-Cantero. 2013. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro. Protoplasma, 250: 1251-1262.

Vlamakis, H., C. Aguilar, R. Losick and R. Kolter. 2008. Control of cell fate by the formation of an architecturally complex bacterial community. Genes & development, 22: 945-953.

Waewthongrak, W., S. Pisuchpen and W. Leelasuphakul. 2015. Effect of Bacillus subtilis and chitosan applications on green mold (Penicilium digitatum Sacc.) decay in citrus fruit. Postharvest Biology and Technology, 99: 44-49.

Wang, J., J. Wang, F. Liu and C. Pan. 2010. Enhancing the virulence of Paecilomyces lilacinus against Meloidogyne incognita eggs by overexpression of a serine protease. Biotechnology letters, 32: 1159-1166.

Wang, X., Q. Li, J. Sui, J. Zhang, Z. Liu, J. Du, R. Xu, Y. Zhou and X. Liu. 2019. Isolation and characterization of antagonistic bacteria Paenibacillus jamilae HS-26 and their effects on plant growth. Bio-Medicine research international.

Wicaksono, W. A., E. E. Jones, S. Casonato, J. Monk and H. J. Ridgway. 2018. Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biological control, 116: 103-112.

Wu, L., H. Shang, Q. Wang, H. Gu, G. Liu and S. Yang. 2016. Isolation and characterization of antagonistic endophytes from Dendrobium candidum Wall ex Lindl., and the biofertilizing potential of a novel Pseudomonas saponiphila strain. Applied Soil Ecology, 105: 101-108.

Xia, Y., S. Xie, X. Ma, H. Wu, X. Wang and X. Gao. 2011. The purL gene of Bacillus subtilis is associated with nematicidal activity. FEMS microbiology letters, 322: 99-107.

Xu, G. and D. Gross. 1986. Selection of fluorescent pseudomonads antagonistic to Erwinia carotovora and suppressive of potato seed piece decay. Phytopathology, 76: 414-422.

Yadav, A. N., P. Verma, D. Kour, K. L. Rana, V. Kumar, B. Singh, V. S. Chauahan, T. Sugitha, A. K. Saxena and H. S. Dhaliwal. 2017. Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. International journal of environmental sciences, 3: 1-8.

Yasmin, S., F. Y. Hafeez, M. S. Mirza, M. Rasul, H. M. Arshad, M. Zubair and M. Iqbal. 2017. Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Frontiers in Microbiology, 8: 1895.

Yasmin, S., A. Zaka, A. Imran, M. A. Zahid, S. Yousaf, G. Rasul, M. Arif and M. S. Mirza. 2016. Plant growth promotion and suppression of bacterial leaf blight in rice by inoculated bacteria. PloS one, 11: e0160688.

Yu, S. M. and Y. H. Lee. 2015. Genes involved in nutrient competition by Pseudomonas putida JBC17 to suppress green mold in postharvest satsuma mandarin. Journal of basic microbiology, 55: 898-906.

Yu, T., L. Wang, Y. Yin, Y. Wang and X. Zheng. 2008. Effect of chitin on the antagonistic activity of Cryptococcus laurentii against Penicillium expansum in pear fruit. International Journal of Food Microbiology, 122: 44-48.

Zeng, J., T. Xu, L. Cao, C. Tong, X. Zhang, D. Luo, S. Han, P. Pang, W. Fu and J. Yan. 2018. The role of iron competition in the antagonistic action of the rice endophyte Streptomyces sporocinereus OsiSh-2 against the pathogen Magnaporthe oryzae. Microbial ecology, 76: 1021-1029.

Zhang, L., X. Tian, S. Kuang, G. Liu, C. Zhang and C. Sun. 2017. Antagonistic activity and mode of action of phenazine-1-carboxylic acid, produced by marine bacterium Pseudomonas aeruginosa PA31x, against Vibrio anguillarum in vitro and in a zebrafish in vivo model. Frontiers in microbiology, 8: 289.

Zhang, X., B. Li, Y. Wang, Q. Guo, X. Lu, S. Li and P. Ma. 2013. Lipopeptides, a novel protein,and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Applied microbiology and biotechnology, 97: 9525-9534.

ZhouG.Yuen, Y. Wang, L. Wei and G. Ji. 2016. Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Protection, 84: 8-13.

ZhuangX., J. Chen, H. Shim and Z. Bai. 2007. New advances in plant growth-promoting rhizobacteria for bioremediation. Environment international, 33: 406-413.



  • There are currently no refbacks.

Copyright (c) 2020 Amjad Ali, Hajra Azeem, Muhammad Ahmad Zeshan, Yasir Iftikhar, Waqas Ashraf, Muhammad Usman Ghani, Ashara Sajid

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Pakistan Journal of Phytopathological
ISSN: 1019-763X (Print), 2305-0284 (Online).
© 2013 Pak. J. Phytopathol. All rights reserved.