SIGNIFICANCE OF RECENT DISCOVERIES IN STRIPE RUST MANAGEMENT

Amir Afzal, Abid Riaz, Farah Naz, Gulshan Irshad, Muhammad K. N. Shah, Muhammad Ijaz

Abstract


Stripe rust in wheat is the most problematic disease damaging the produce severely in wheat growing regions. In this paper findings in recent past related to yellow rust with reference to their application in the management of disease have been debated. In this regard various aspects of breeding for resistance were focused. Pathogen has adopted under the changed climatic scenario brings and disease is observed in the regions where it did not exist earlier. Rising temperatures has increased the irregularity and concentration of precipitation, causing the spread and severity of rust diseases. NB-LRR proteins are expected to play a substantial part in advanced agriculture where yield is the primary goal for screening. Biotechnology has revolutionized in biological sciences including Plant Pathology. Experts are studying the biochemical nature and the signals involved in, a plant’s responses to pathogen attack and development of disease. Plant resistance genes are being engineered into plants to defend them from plant diseases


Keywords


Wheat, Stripe rust, Puccinia striiformis f. sp. tritici, PST, DNA Markers

Full Text:

PDF

References


Afzal, A., A. Riaz, and R. M. Rana 2017. Screening and pedigree based genetic diversity analysis of wheat advanced lines against stripe rust under changing climatic scenario. International Conference on Tackling Climate Change through Plant Breeding: 53-54.

Afzal, A., A. Riaz, F. Naz., G. Irshad and R. M. Rana. 2018. Detection of durable resistance against stripe rust and estimating genetic diversity in wheat through pedigree analysis of candidate wheat lines. International Journal of Biosciences 12: 3: 24-35.

Agrios, G. N. 2005. Introduction to plant pathology. Elsevier Academic Press Publication.

Ali, S., M. Leconte, H. Rahman, M. S. Saqib, P. Gladieux, J. Enjalbert and C. de Vallavieille-Pope. 2014. A high virulence and pathotype diversity of Puccinia striiformis f.sp. tritici at its centre of diversity, the Himalayan region of Pakistan. European Journal of Plant Pathology, 140: 275-290.

Ali, S., P. Gladieux, M. Leconte, A. Gautier, A. F. Justesen, M. S. Hovmøller, J. Enjalbert and C. de Vallavieille-Pope. 2014. Origin, Migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici. PLoS Pathogens, 10: e1003903.

Ali, S., Y. Liu, M. Ishaq, T. Shah, A. Ilyas and I. U. Din. 2017. Climate change and its impact on the yield of major food crops: Evidence from Pakistan. Foods, 6: 39.

Bahri, B., M. Leconte, C. de Vallavieille-Pope and J. Enjalbert. 2009. Isolation of ten microsatellite loci in an EST library of the phytopathogenic fungus Puccinia striiformis f.sp. tritici. Conservation Genetics, 10: 1425-1428.

Bahri, B., S. J. A. Shah, S. Hussain, M. Leconte, J. Enjalbert and C. de Vallavieille-Pope. 2011. Genetic diversity of the wheat yellow rust population in Pakistan and its relationship with host resistance. Plant Pathology, 60: 649-660.

Bueno-Sancho, V., A. Persoons, A. Hubbard, L. E. Cabrera-Quio, C. M. Lewis, P. Corredor-Moreno, D. C. E. Bunting, S. Ali, S. Chng, D. P. Hodson, R. Madariaga Burrows, R. Bryson, J. Thomas, S. Holdgate and D. G. O. Saunders. 2017. Pathogenomic analysis of wheat yellow rust lineages detects seasonal variation and host specificity. Genome Biology and Evolution, 9: 3282-3296.

Burdon, J. J., L. G. Barrett, G. Rebetzke and P. H. Thrall. 2014. Guiding deployment of resistance in cereals using evolutionary principles. Evolutionary Applications, 7: 609-624.

Césari, S., H. Kanzaki, T. Fujiwara, M. Bernoux, V. Chalvon, Y. Kawano, K. Shimamoto, P. Dodds, R. Terauchi and T. Kroj. 2014. The NB‐LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. The EMBO Journal, 33: 1941-1959.

Chen, X. 2013. Review Article: High-Temperature Adult-Plant Resistance, Key for Sustainable Control of Stripe Rust. American Journal of Plant Sciences, 04: 608-627.

Ellis, J. G., E. S. Lagudah, W. Spielmeyer and P. N. Dodds. 2014. The past, present and future of breeding rust resistant wheat. Frontiers in Plant Science, 5.

Fermin-Munoz, G. A., B. Meng, K. Ko and S. Mazumdar-Leighton. 2000. Biotechnology: A new era for plant pathology and plant protection. APSnet Feature Articles.

Hakim MS, Y. A., El‐Naimi M, Maaz I. 2001. Wheat yellow rust pathotypes in Western Asia. in: Johnson R, Y.A., Wellings C, Saidi A, Ketata H, (Ed.), Meeting the Challenge of Yellow Rust in Cereal Crops. Proceedings of the Regional Conference on Yellow Rust in the Central and West Asia and North Africa Region. International Center for Agricultural Research in the Dry Areas (ICARDA), pp. 55–61.

Hovmøller, M. S., C. K. Sørensen, S. Walter and A. F. Justesen. 2011. Diversity of Puccinia striiformison cereals and grasses. Annual Review of Phytopathology, 49: 197-217.

Hovmoller, M. S., S. Walter and A. F. Justesen. 2010. Escalating threat of wheat rusts. Science, 329: 369-369.

Hovmøller, M. S., S. Walter, R. A. Bayles, A. Hubbard, K. Flath, N. Sommerfeldt, M. Leconte, P. Czembor, J. Rodriguez-Algaba, T. Thach, J. G. Hansen, P. Lassen, A. F. Justesen, S. Ali and C. de Vallavieille-Pope. 2015. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathology, 65: 402-411.

Hubbard, A., C. M. Lewis, K. Yoshida, R. H. Ramirez-Gonzalez, C. de Vallavieille-Pope, J. Thomas, S. Kamoun, R. Bayles, C. Uauy and D. Saunders. 2015. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biology, 16: 23.

Hulbert, S. and M. Pumphrey. 2014. A time for more booms and fewer busts? Unraveling cereal–rust Interactions. Molecular Plant-Microbe Interactions, 27: 207-214.

Hurni, S., S. Brunner, D. Stirnweis, G. Herren, D. Peditto, R. A. McIntosh and B. Keller. 2014. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. The Plant Journal, 79: 904-913.

Jin, Y., L. J. Szabo and M. Carson. 2010. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology, 100: 432-435.

Mago, R., G. Brown-Guedira, S. Dreisigacker, J. Breen, Y. Jin, R. Singh, R. Appels, E. Lagudah, J. Ellis and W. Spielmeyer. 2011. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theoretical and Applied Genetics, 122: 735-744.

Marone, D., M. Russo, G. Laidò, A. De Leonardis and A. Mastrangelo. 2013. Plant nucleotide binding site–leucine-rich repeat (NBS-LRR) genes: Active guardians in host defense responses. International Journal of Molecular Sciences, 14: 7302-7326.

Milus, E. A., K. Kristensen and M. S. Hovmøller. 2009. Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformisf. sp. tritici causing stripe rust of wheat. Phytopathology, 99: 89-94.

Solh, M., K. Nazari, W. Tadesse and C. Wellings. 2012. The growing threat of stripe rust worldwide. Borlaug Global Rust Initiative (BGRI) conference, Beijing, China. pp. 1-4.

Steuernagel, B., S. K. Periyannan, I. Hernández-Pinzón, K. Witek, M. N. Rouse, G. Yu, A. Hatta, M. Ayliffe, H. Bariana, J. D. G. Jones, E. S. Lagudah and B. B. H. Wulff. 2016. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nature Biotechnology, 34: 652-655.

Thach, T., S. Ali, C. de Vallavieille-Pope, A. F. Justesen and M. S. Hovmøller. 2016. Worldwide population structure of the wheat rust fungus Puccinia striiform is in the past. Fungal Genetics and Biology, 87: 1-8.

Todorovska, E., N. Christov, S. Slavov, P. Christova and D. Vassilev. 2009. Biotic stress resistance in wheat—breeding and genomic selection implications. Biotechnology & Biotechnological Equipment, 23: 1417-1426.

Vazquez, M. D., R. Zemetra, C. J. Peterson, X. M. Chen, A. Heesacker and C. C. Mundt. 2015. Multi-location wheat stripe rust QTL analysis: genetic background and epistatic interactions. Theoretical and Applied Genetics, 128: 1307-1318.

Walter, S., S. Ali, E. Kemen, K. Nazari, B. A. Bahri, J. Enjalbert, J. G. Hansen, J. K. M. Brown, T. Sicheritz-Pontén, J. Jones, C. de Vallavieille-Pope, M. S. Hovmøller and A. F. Justesen. 2016. Molecular markers for tracking the origin and worldwide distribution of invasive strains of Puccinia striiformis. Ecology and Evolution, 6: 2790-2804.

Wellings, C. R. 2011. Global status of stripe rust: a review of historical and current threats. Euphytica, 179: 129-141.

Zhai, C., Y. Zhang, N. Yao, F. Lin, Z. Liu, Z. Dong, L. Wang and Q. Pan. 2014. Function and Interaction of the coupled genes responsible for pik-h encoded rice blast resistance. PLoS ONE, 9: e98067.




DOI: https://doi.org/10.33866/phytopathol.030.02.0417

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Amir Afzal, Abid Riaz, Farah Naz, Gulshan Irshad, Muhammad K. N. Shah, Muhammad Ijaz

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

      
   
Pakistan Journal of Phytopathological
ISSN: 1019-763X (Print), 2305-0284 (Online).
© 2013 Pak. J. Phytopathol. All rights reserved.