ANALYSIS OF N-BUTANOL FLOWER EXTRACT OF CASSIA FISTULA THROUGH GC-MS AND IDENTIFICATION OF ANTIMICROBIAL COMPOUNDS

Malik F.H. Ferdosi, Arshad Javaid, Iqra H. Khan, Shahbaz Khan, Nadeem Shad

Abstract


This study was carried out to identify antimicrobial phytoconstituents present in n-butanol soluble part of methanolic flower extract of Cassia fistula L. The flowers were dipped in methanol for two weeks, filtered and the solvent was evaporated on a rotary evaporator. The n-butanol fraction was separated in a separating funnel and analyzed by GC-MS. There were 18 phytoconstituents in this fraction. The most abundant compound was 1H-indene, octahydro-, cis- with 35.13% peak area followed by cyclohexene, 1-butyl- (21.88%) and cyclohexane, butyl- (12.87%). Other compounds included 9-heptadecanol(3.70%), behenic alcohol (1.63%), decane, 3-methyl- (2.90%), cyclohexane, 1-methyl-3-(1-methylethenyl)-, cis- (1.25%), 3-hexanol, 5-methyl- (1.67%), acetaldehyde isopentyl propyl acetal (1.69%), undecane (2.12%), 1,3-dioxane, 2-ethyl-5-methyl- (1.13%), acetaldehyde butyl pentyl acetal (3.04%), acetaldehyde dipentyl acetal (3.24%), cycloheptasiloxane, tetradecamethyl- (1.11%), Cyclooctasiloxane, hexadecamethyl- (1.77%), cyclononasiloxane, octadecamethyl- (1.48%), n-hexadecanoic acid (2.01%), and tetracosamethyl-cyclododecasiloxane (1.46%). A thorough literature survey showed that n-hexadecanoic acid; cyclohexane, butyl-; cyclooctasiloxane, hexadecamethyl-; cyclononasiloxane, octadecamethyl- and behenic alcohol in n-butanol fraction possess antifungal, antibacterial and/or antiviral properties.


Keywords


Cassia fistula, Flower extract; GC-MS analysis, n-Butanol.

Full Text:

PDF

References


Abbakar, M. N. and R. R. T. Majinda. 2016. GC-MS analysis and preliminary antimicrobial activity of Albizia adianthifolia (Schumach) and Pterocarpus angolensis (DC). Medicines, 3: 3.

Al Bratty, M., Hyame, A. N. A. Makeen, H. A. Alhazmi, S. M. S. Abdalla and A. Khalid. 2020. Phytochemical, cytotoxic, and antimicrobial evaluation of the fruits of miswak plant, Salvadora persica L. Journal of Chemistry, 2020: 4521951.

Aoki, F. Y. 2015. Antivirals against Herpes Viruses. In: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 8th Edition, J.E. Bennett, R. Raphael and M.J. Blase (eds). Elsevier Publisher, 2.

Aparna, V., K. V. Dileep, P. K. Mandal, P. Karthe, C. Sadasivan and M. Haridas. 2012. Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chemical Biology and Drug Design, 80: 434-439.

Asseleih, L. M. C., O. H. Hernandez and J. R. Sanchez. 1990. Seasonal variation in the content of sennosides in leaves and pods of two Cassia fistula populations. Phytochemistry, 29: 3095-3099.

Banaras, S., A. Javaid and I. H. Khan. 2020. Potential antifungal constituents of Sonchus oleraceous against Macrophomina phaseolina. International Journal of Agriculture and Biology, 24: 1376-1382.

Banaras, S., A. Javaid and I. H. Khan. 2021. Bioassays guided fractionation of Ageratum conyzoides for identification of natural antifungal compounds against Macrophomina phaseolina. International Journal of Agriculture and Biology 25: in press.

Chaerunisaaa, A. Y., Y. Susilawatib, M. Muhaiminc, T. Milandab, R. Hendrianid and A. Subarnasd. 2020. Antibacterial activity and subchronic toxicity of Cassia fistula L. barks in rats. Toxicology Reports, 7: 649-657.

Duraipandiyan, V. and S. Ignacimuthu. 2007. Ethnomed. Plants, 112: 590-594.

Govindarajan, M., A. Jebanesan and T. Pushpanathan. 2008. Larvicidal and ovicidal activity of Cassia fistula Linn. leaf extract against filarial and malarial vector mosquitoes. Parasitol Resource, 102: 89-292.

Huang, C. B., Y. Alimova, T. M. Myers and J. L. Ebersole. 2011. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Archives of Oral Biology, 56: 650-654.

Katz, D. H., J. F. Marcelletti, M. H. Khalil, L. E. Pope and L. R. Katz. 1991. Antiviral activity of 1-docosanol, an inhibitor of lipid-enveloped viruses including herpes simplex". Proceedings of National Academy of Sciences USA, 88: 10825-10829.

Khan, I. H. and A. Javaid. 2019. Antifungal, antibacterial and antioxidant components of ethyl acetate extract of quinoa stem. Plant Protection, 3: 125-130.

Khan, I. H. and A. Javaid. 2020a. Antifungal activity and GC-MS analysis of n-butanol extract of quinoa leaves. Bangladesh Journal of Botany, 49: 1045-1051.

Khan, I. H. and A. Javaid. 2020b. In vitro biocontrol potential of Trichoderma pseudokoningii against Macrophomina phaseolina. International Journal of Agriculture and Biology, 24: 730-736.

Kumar, P. P., S. Kumaravel and C. Lalitha. 2010. Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. African Journal of Biochemistry Research, 4: 191-195.

Kunle, O. F., H. O. Egharevba and P. O. Ahmadu. 2012. Standardization of herbal medicines - a review. International Journal of Biodiversity and Conservation, 4: 101-112.

Ojinnaka, C. M., K. I. Nwachukwu and M. N. Ezediokpu. 2015. The chemical constituents and bioactivity of the seed (fruit) extracts of Buchholzia coriacea Engler (Capparaceae). Journal of Applied Sciences and Environmental Management, 19: 795-801.

Omoruyi, B. E., A. J. Afolayan and G. Bradley. 2014. Chemical composition profiling and antifungal activity of the essential oil and plant extracts of Mesembryanthemum edule (L.) Bolus leaves. African Journal of Traditional Complementary and Alternative Medicines, 11: 19-30.

Rahuman, A. A., G. Gopalakrishnan, B. S. Ghouse, S. Arumugam and B. Himalayan. 2000. Effect of Feronia limonia on mosquito larvae. Fitoterapia, 71: 553-555.

Raja, N., S. Albert and S. Ignacimuthu. 2000. Effect of solvent residues of Vitex negundo Linn. and Cassia fistula Linn. On pulse beetle, Callosobruchus maculates Feb. and its larval parasitoid, Dinarmus vagabundus (Timberlake). Indian Journal of Experimental Biology, 38: 290-292.

Rajkumar, S. and A. Jebanesan. 2004. Larvicidal activity of Solanum trilobatum Linn. against filarial and malarial vector mosquitoes. Tropical Biomedicine, 21: 93-96.

Ranganathan, D. 2014. Phytochemical analysis of Caralluma nilagiriana using GC-MS. Journal of Pharmacognosy and Phytochemistry, 3: 155-159.

Satyavati, G. V. and M. Sharma. 1989. Medicinal plant in India, ICMR, New Delhi.

Shoaib, M., A. A. Israyilova and K. Ganbarov. 2019. Cyclohexane and its functionally substituted derivatives: important class of organic compounds with potential antimicrobial activities. Journal of Microbiology, Biotechnology and Food Sciences, 9: 84-87.




DOI: https://doi.org/10.33866/phytopathol.033.01.0661

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Malik Fiaz Hussain Ferdosi, Arshad Javaid, Iqra Haider Khan, Shahbaz Khan, Nadeem Shad

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

      
   
Pakistan Journal of Phytopathology
ISSN: 1019-763X (Print), 2305-0284 (Online).
© 2013 Pak. J. Phytopathol. All rights reserved.