COMPATIBILITY OF MYCO-FUNGICIDE ISOLATE (TRICHODERMA HARZIANUM RIFAI) WITH FUNGICIDES AND THEIR IN-VITRO SYNERGISM ASSESSMENT

Umara Arain, Mai J. Dars, Aziz A. Ujjan, Hadi B. Bozdar, Abdul Q. Rajput, Saleem Shahzad

Abstract


Trichoderma harzianum is one of the most famous biocontrol agent in plant protection. Present study investigated the T. harzianum, either, to investigate there overall compatibility with commercial fungicide. The compatibility tests were conducted using the food poisoned technique adopted with dual culture methods. Among the seven commercial formulations of the fungicides T. harzianum strain was highly tolerable with the fungicide Thiovit Jet (Sulfur) with EC50 753.1 ppm followed by Ridomil Gold (Mancozeb 64, Metalex M 4 %) with EC50 469.1 ppm, Folio Gold (Metalexyl M 4% , Chlorothalonil 40%) @ EC50 227.8 ppm, it also tolerated to Kocide (Copper hydroxide) EC50 176.1 ppm, Tilt (Propiconazole) @ EC50 47.9 ppm, T. harzianum was highly susceptible to Score (Difenoconazole) @ EC50 13.2 ppm and highly Shincar (Carbendazim) @ EC50 2.5 ppm. Poisoned food media tests suggested that Kocide fungicide @ 50 ppm < EC10 synergized the antagonist potential of T. harzianum up to 03% against a pathogenic fungal isolate of F. oxysporum; Ridomil Gold and Folio Gold @ 150 and 70 ppm < EC10 synergized the biocontrol fungus against the pathogen in very slight values 1.0 to 0.5%, respectively; Thiovit jet showed negative effects on the biocontrol fungus; Shincar, Score and Tilt fungicides checked the T. harzianum growth. The in-vivo tritrophic tests are proposed to be examined using experimental designs for the combine utilizations of the treatments i.e. Soil + F. oxysporum + Kocide recommended doses + the strain of T. harzianum.


Keywords


T. harzianum, fungicide synergism, fungicide compatibility, F. oxysporum

Full Text:

PDF

References


Altinok, H. H., and O. Erdoğan. 2015. Determination of the in vitro effect of Trichoderma harzianum on phytopathogenic strains of Fusarium oxysporum. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43: 494–500.

Aswathi, S., R. M. Gade, A. V. Shitole, S. Kapali and M. Yogeshwar. 2019. Studies on tolerance and sensitivity of fungal and bacterial bioagents to three pesticides commonly used in agriculture. Harmonony with Natural Resource Conservation in Context of Climate Change, 53: 775–781.

Bayoumi, Y. A. 2008. Improvement of postharvest keeping quality of white pepper fruits (Capsicum annuum, L.) by hydrogen peroxide treatment under storage conditions. Acta Biologica. Szeged, 52: 7–15.

Bayoumi, Y., N. Taha, T. Shalaby, T. Alshaal and H. El-Ramady. 2019. Sulfur promotes biocontrol of purple blotch disease via Trichoderma spp. and enhances the growth, yield and quality of onion. Applied Soil Ecology, 134: 15–24.

Cardoza, R. E., J. A. Vizcaíno, M. R. Hermosa, S. Sousa, F. J. González, A. Llobell, E. Monte and S. Gutiérrez. 2006. Cloning and characterization of the erg1 gene of Trichoderma harzianum: Effect of the erg1 silencing on ergosterol biosynthesis and resistance to terbinafine. Fungal Genetics and Biology, 43: 164–178.

Carvalho, D. D. C., M. Lobo Junior, I. Martins, P. W. Inglis, and S. C. M. Mello. 2014. Biological control of Fusarium oxysporum f. sp. phaseoli by Trichoderma harzianum and its use for common bean seed treatment. Tropical Plant Pathology, 39: 384–391.

Chand, T. and C. Logan. 1984. Antagonists and parasites of Rhizoctonia solani and their efficacy in reducing stem canker of potato under controlled conditions. Transactions of British Mycological Society, 83: 107–112.

Chaparro, A. P., L. H. Carvajal and S. Orduz. 2011. Fungicide tolerance of Trichoderma asperelloides and Trichoderma harzianum strains. Agricultural Sciences, 02: 301–307.

Chung, W. H., W. C. Chung, P. F. Ting, C. C. Ru, H. C. Huang and J. W. Huang. 2009. Nature of resistance to methyl benzimidazole carbamate fungicides in Fusarium oxysporum f.sp. lilii and F. oxysporum f.sp. gladioli in Taiwan. Journal of Phytopathology, 157: 742–747.

El-Hassan, S. A., S. R. Gowen and B. Pembroke. 2013. United Nations World Population Prospects: the 2019 Revision. Department of Economic and Social Affairs, Population Division, United Nations, New York. Journal of Plant Protection Research, 53: 12–26.

Erayya, N. Shukla, S. A., A. K. Tewari and J. Kumar. 2020. Compatibility of Trichoderma spp. with copperchitosan graded combinations. Research in Plant Disease, 35: 42.

Fukase, E. and W. Martin. 2020. Economic growth, convergence, and world food demand and supply. World Development, 132: 12–26.

Gowdar, S., H. Babu, V. Nargund and M. Krishnappa. 2006. Compatibility of fungicides with Trichoderma harzianum. Agricultural Science Digest, 26: 279–281.

Hashem, A., B. Tabassum and E.F. Abd_Allah. 2019. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi journal of biological sciences, 26: 1291-1297.

Hermosa, R., L. Botella, E. Keck and others. 2011. The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity and enhances tolerance to salt and osmotic stresses. Journal of Plant Physiology, 168: 1295–1302.

Idrees, S., S. Chohan, M. Abid, R. Perveen and M. T. Malik. 2019. Biological potential of trichoderma species in the control of some phytopathogenic fungi. Pakistan Journal of Phytopathology, 31: 201–206.

Khalko, S. and S. K. Pan. 2009. Phytotoxicity of some fungicides and their compatibility study with a potential biocontrol agent Trichoderma harzianum. Journal of Crop and Weed, 5: 151–153.

Kredics, L., Z. Antal, L. Manczinger, A. Szekeres, F. Kevei and E. Nagy. 2003. Influence of environmental parameters on Trichoderma strains with biocontrol potential. Food Technology and Biotechnology, 41: 37-42.

Kumawat, M. K., N. K. Chandran and S. Sriram. 2019. Evaluation of carbendazim tolerant strain of Trichoderma harzianum GJ16B for its efficacy in the management of carbendazim resistant Fusarium solani isolate causing marigold wilt. Indian Phytopathology, 72: 675–680.

Li, M. and Q. Yang. 2007. Isolation and characterization of a β-tubulin gene from Trichoderma Harzianum. Biochemical Genetics, 45: 529–534.

Liu, S., L. Fu, S. Wang, J. Chen, J. Jiang, Z. Che, Y. Tian and G. Chen. 2021. Carbendazim Resistance of Fusarium graminearum from Henan Wheat. Plant Disease, 103: 2536–2540.

Liu, S. Y., C. T. Lo, M. A. Shibu, Y. L. Leu, B. O. Y. Jen and K. C. Peng. 2009. Study on the anthraquinones separated from the cultivation of Trichoderma harzianum strain Th-R16 and their biological activity. Journal of Agricultural and Food Chemistry, 57: 7288–7292.

Montero-Barrientos, M., R. Hermosa, R. E. Cardoza, S. Gutiérrez, C. Nicolás and E. Monte. 2010. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. Journal of Plant Physiology, 167: 659–665.

O’Neill, T. M., Y. Elad, D. Shtienberg and A. Cohen. 1996. Control of grapevine grey mould with Trichoderma harzianum T39. Biocontrol Science and Technology, 6: 139–146.

Oerke, E. C. 2006. Crop losses to pests. Journal of Agricultural Sciences, 144: 31–43.

Ranganathaswamy, M., A. K. Patibanda and G. N. Rao. 2012. Evaluation of toxicity of agrochemicals on Trichoderma isolates in vitro. Journal of Biological Control, 26: 391–395.

Ranganathswamy, M., A. K. Patibanda, G. S. Chandrashekhar, D. Sandeep, S. B. Mallesh and H. B. H. Kumar. 2012. Compatibility of Trichoderma isolates with selected fungicides in vitro. Intrnation Journal of Plant Protection, 5: 12–15.

Rautela, A., N. Shukla, A. Ghatak, J. Kumar and A. K. Tewari. 2018. Field evaluation of different copper sources in a consortium of “Copper-Chitosan-Trichoderma” for management of late blight disease of tomato. Journal of Pharmacognosy and Phytochemistry, 7: 1260–1266.

Rosado, I. V., M. Rey, A. C. Codón, J. Govantes, M. A. Moreno-Mateos and T. Benítez. 2007. QID74 Cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces. Fungal Genetics and Biology, 44: 950–964.

Royse, D. J. 1978. The Influence of Fungi Isolated from Peach Twigs on the Pathogenicity of Cytospora cincta. Phytopathology, 68: 603.

Rubio, M. B., R. Hermosa, J. L. Reino, I. G. Collado and E. Monte. 2009. Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl-2H-pyran-2-one production and antifungal activity. Fungal Genetics and Biology, 46: 17–27.

Ruocco, M., S. Lanzuise, F. Vinale, R. Marra, D. Turrà, S. L. Woo and M. Lorito. 2009. Identification of a new biocontrol gene in Trichoderma atroviride: The role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Molecular Plant-Microbe Interaction, 22: 291–301.

Saiprasad, G. V. S., J. B. Mythili, L. Anand, C. Suneetha, H. J. Rashmi, C. Naveena and G. Ganeshan. 2009. Development of Trichoderma harzianum endochitinase gene construct conferring antifungal activity in transgenic tobacco. Indian Journal of Biotechnology, 8: 199–206.

Sarkar, S., P. Narayanan, A. Divakaran, A. Balamurugan and R. Premkumar. 2010. The in vitro effect of certain fungicides, insecticides, and biopesticides on mycelial growth in the biocontrol fungus Trichoderma harzianum. Turkish Journal of Biology, 34: 399–403.

Schmitz, H., E. E. Bateman, R. H. Colley and others. 1930. A Suggested Toximetric Method for Wood Preservatives. Industrial and Engineering Chemistry, Analytical Edition, 2: 361–363.

Secor, G. A., and V. V. Rivera. 2012. Fungicide resistance assays for fungal plant pathogens. Methods in Molecular Biology, 835: 385–392.

Shah, M. U. D., M. Ahmad, V. Sagar and others. 2018. In vitro evaluation of bioagents and fungitoxicants against Fusarium oxysporum and Fusarium solani causing corm rot of saffron (Crocus sativus) in Kashmir, India. Acta Horticulture, 1200: 125–131.

Sharma, P., M. Sharma, M. Raja, D. V. Singh and M. Srivastava. 2016. Use of Trichoderma spp. in biodegradation of Carbendazim. Indian Journal of Agricultural Sciences, 86: 891–894.

Shashikumar, H. M., S. Koulagi and S. E. Navyashree. 2019. Compatibility of Trichoderma viride and Trichoderma harzianum with Fungicides against Soil Borne Diseases of Tomato and Cabbage. International Journal of Current Microbiology and Applied Sciences, 8: 1920–1928.

Sood, M., D. Kapoor, V. Kumar, M. S. Sheteiwy, M. Ramakrishnan, M. Landi, F. Araniti and A. Sharma. 2020. Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants, 9: 1–25.

Valarmathi, P. 2013. Compatibility of Copper hydroxide (Kocide 3000) with Biocontrol Agents. IOSR Journal of Agriculture and Veterinary Sciences, 3: 28–31.

VI, G. 2018. Evaluation of Antagonistic Effect of Trichoderma harzianum against Fusarium oxysporum causal Agent of White Yam (Dioscorearotundata poir) Tuber Rot. Trends in Technical and Scientific Research, 1: 12–26.

Vipul, K., K. Akshay, S. Shikha, K. Narender and S. Mukesh. 2016. Assessment of compatibility of Trichoderma harzianum with agrochemicals. Journal of Experimental Zoology, 53: 12–26.

Vizcaíno, J. A., F. J. González, M. B. Suárez and others. 2006. Generation, annotation and analysis of ESTs from Trichoderma harzianum CECT 2413. BMC Genomics, 7: 12–26.

Wenjun, Z. 2006. Overview and Forecast on Forestry Productions Worldwide. Environmental Monitoring and Assessment, 53: 12–26.




DOI: https://doi.org/10.33866/phytopathol.034.02.0763

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Aziz Ahmed Ujjan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

      
   
Pakistan Journal of Phytopathology
ISSN: 1019-763X (Print), 2305-0284 (Online).
© 2013 Pak. J. Phytopathol. All rights reserved.