Merzoug Aoumria, Taleb Malika, Soudani Abderrahmane


Surveys of three nurseries in northwestern Algeria have shown the presence of several cases of withering on olive seedlings.This study aims to confirm the pathogenesis of isolated species mycoflora associated with the young trees in nurseries with the symptom of dieback and wilting. In order to minimize the danger of the use of chemical substances in olive cultivation and establish a successful control strategy for this disease, the biological control potential of Trihoderma spp. isolates derived from rhizospheric soils of intact olive trees against Fusarium oxysporum (FO), Fusarium solani (FS) and Rhizoctonia solani (RS) under laboratory and greenhouse conditions was estimated. The results indicated that the symptoms observed in nursery were the result of a fungal complex comprising several primary and secondary pathogens contributing to the appearance of various symptoms. The results revealed the presence of dieback ranging from 13 to 26%. As regards the biological control test, all isolates of Trihoderma spp. were capable to inhibit pathogens mycelial growth significantly in vivo, the maximumwas recorded with the T4 isolate (78.89%) antifungal activity against FO. Results of greenhouse (in vivo) tests showed that plants injected only with antagonists or in combination with a fungal pathogen had a lower incidence of wilt disease than plants inoculated with a single pathogen. The decrease in the incidence of wilt disease was 80%, 58% and 50% FO, RS and FS respectively compared to the uninoculated control. Our results also showed that the four mixed Trichoderma isolates were able to stimulate plant growth parameters, which mainly resulted in better axial growth and higher biomass.The results obtained under greenhouse, shows the incorporation of Trichoderma directly into soil or composts for nursery soils as preventive and curative treatments.


Biocontrol, dieback, nurseries, Olivier (Olea europaea), Trichoderma spp., wilt

Full Text:



Alabouvette, C., P. Lemanceau and C. Steinberg. 1993. Recent advances in the biological control of Fusarium wilts. Pesticide Science, 37: 365–373.

Al-Ahmad, M. 1984. Decline of olive trees in southern Syria. Arabian Journal Plant Protection, 2:70–76.

Amer F. M. and A. Osama. 2018. Biocontrol efficacy of Trichoderma spp. against sesame wilt caused by Fusarium oxysporum f. sp. sesami, Archives of Phytopathology and Plant Protection, 51(5): 277-287.

Benítez T., A. M. Rincón Limón, M.C. A. C. Codón. 2004. Biocontrol mechanisms of Trichoderma strains. International Journal of Microbiology, 7(4): 249-60.

Boulila, M. 2011. Current knowledge on major disorders of olive in Tunisia. Revue Ezzaitouna, 12(1): 1-7.

Brunner K., S. Zeilinger, R. Ciliento, S. L. Woo, M. Lorito and C.P. Kubicek. 2005. Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Applied Environmental Microbiology, 71: 3959-3965.

Chliyeh, M., F. R. Selmaoui, K. O. Touhami, A. F. Maltouf, A. El Modafar, C. Moukhli, A. Oukabli, A. Benkirane and R. Douira. 2014. Survey of the Fungal Species Associated to Olive-tree (Olea europaea L.) in Morocco. International Journal of Research Biotechnology, 2 (2) : 15-32.

Contreras-Cornejo H.A., L. Macías-Rodríguez, C. Cortés-Penagos and J. López-Bucio. 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin dependent mechanism in Arabidopsis. Plant Physiology, 149 (3): 1579–1592.

Datta B.S., A.K. Das and S.N. Ghosh. 2004. Fungal antagonists of some plant pathogens. Mycopathology, 1: 15-17

Davet, P. 1979. Technique pour 1 analyse des populations de Trichoderma et de Gliocladium virense dar. Annual Review of Phytopathology, 11: 529–533.

FAO 2012. FAOSTAT Statistics Division, 2012 http://faostat.fao.org/site/339/default.aspx.

Fotoohiyan, Z., R. Saeed, H. Gholam, B. Shahidi, H. M Amir and M. Mohammad. 2017. Biocontrol potential of Trichoderma harzianum in controlling wilt disease of pistachio caused by Verticillium dahlia: Journal of Plant Protection Research, 1427-4337.

Gravel V., V. Antoun and R. J. Tweddell. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biology and Biochemistry, 39: 1968-1977.

Harman, G. E. 2000. Myths and dogmas of biocontrol: Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease, 84: 377-393.

Harman, G.E., C.R. Howell. A. Viterbo, I. Chet and M. Lorito 2004. Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews in Microbiology, 2 (1): 43–56. DOI:https://doi.org/10.1038/nrmicro797.

Hibar K., W. Gamaoun and M.A. Triki. 2017. Isolation, identification and biological control of the major pathogens causing root rot and wilt diseases of young olive trees in Tunisia. Journal of New Sciences, Agriculture and Biotechnology, 39(4): 2121-2130.

Hoitink, H. A. J., L. V. Madden, and A. E. Dorrance, 2006. Systemic resistance induced by Trichoderma spp.: Interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology, 96:186-189.

Howell, C.R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87: 4–10.

Huang L C. A.F. Ryan, D.A. Cockayne and G.D. Housley, 2006. Developmentally regulated expression of the P2X(3) receptor in the mouse cochlea. Histochemistry and Cell Biology, 125: 681–692.

Jardak, T., A. Jerraya, and M. Mahjoub. 2007. La protection intégrée de l’oléiculture dans les pays de l’Afrique de nord. Organisation des Nations Unies pour l’Alimentation et l’Agriculture. Bureau sous régional pour l’Afrique du Nord. SNEA-Tunis, FAO. 2004.

Jijakly, M.H. 2003. La lutte biologique en phytopathologie, In : Phytopathology. Lepoivre P. (Eds). De Boeck, Bruxelles.

Kamala T. and D. S. Indira. 2012. Biocontrol properties of indigenous Trichoderma isolates from North-east India against Fusarium oxysporum and Rhizoctonia solani. African Journal of Biotechnology, 11(34): 8491-8499.

Kapoor, A. S. 2008. Biocontrol potential of Trichoderma spp. against important soilborne diseases of vegetable crops. Indian Phytopathology, 61(4): 492-498.

Kumar G., A. Maharshi, J. Patel, A. Mukherjee, H. B. Singh and B. K. Sarma. 2016.Trichoderma: A Potential Fungal Antagonist to Control Plant Diseases. SATSA Mukhapatra-Annual Technical Issue, 21.

Merzoug A., M. TALEB and A. SAHLA, 2018. Identification des principaux agents fongiques responsables du dépérissement vasculaire et pourriture racinaire des oliviers en pépinières dans le nord-ouest algérien. Agrobiologia, 8(2) : 1134-1141.

Morsi, M.E. A., M.A.E. Hassan, M.E.A. Abo rehab and F.M. Radwan. 2009. Incidence of root-rot and wilt disease complex of olive trees in New Valley Governorate in Egypt and its control. Assiut Journal of Agricultural Sciences, 40: 105-123.

Mouria B., A. Ouazzani-Touhami and A. Douira. 2008. Effet de diverses souches du Trichoderma sur la croissance d'une culture de tomate en serre et leur aptitude à coloniser les racines et le substrat. Phytoprotection, 88(3): 103-110.

Moya P., J. R. Girotti A. Toledo and M. Sisterna. 2018. Antifungal activity of Trichoderma VOCs against Pyrenophora teres, the causal agent of barley net blotch. Journal of Plant Protection Research, 1: 45-53.

Porras Soriano A., M.L. Soriano Martín and A. Porras Piedra. 2003. Grafting olive cv. Cornicabra on rootstocks tolerant to Verticillium dahlia reduces their susceptibility. Crop Protection, 22: 369-374.

Rahman, M., T. Ansari, M. Alam, J. Moni and M. Ahmed, 2018. Efficacy of Trichoderma against Colletotrichum capsici Causing Fruit Rot Due to Anthracnose of Chili (Capsicum annum L.). The Agriculturists, 16(02): 75-87.

Rifai, M.A. 1969. A revision of the genus Trichoderma. Mycological papers no. 116. Commonwealth Mycological Institute, Kew, Surrey, England.

Salas-Marina M.A., M.A. Silva-Flores, E.E. Uresti-Rivera, E. Castro-Longoria, A. Herrera-Estrella and S. Casas-Flores. 2011. Colonizationof Arabidopsis roots by Trichoderma atroviride promotes growthand enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. European Journal of Plant Pathology, 131: 15–26.

Samuels G.J., P. Chaverri, D.F. Farr and E.B. Mc Cray. 2015. Trichoderma Online, Systematic Mycology and Microbiology Laboratory, ARS, USDA.

Samuels, G. J. 2006. Trichoderma: Systematics, the sexual state, and ecology. Phytopathology, 96 (2): 195–206.

Sanchez Hernandez, M.E., A. Ruiz Davila, A. Perez de Algaba Blanco, M.A. Lopez and A. Trapero Casas. 1998. Occurrence and etiology of death of young olive trees in southern Spain. European Journal of Plant Pathology, 104:347-357.

Sanei S. J., S. M. Okhovvat, G. A. Hedjaroude, H. Saremi and M. Javan-Nikkhah. 2014. Peltate trichome distribution and scab resistant in some olive cultivars. 3rd Biological Compound and Optimize Use of Pesticides in Agriculture, 2004, 592.

Sharma, P. 2011. Complexity of Trichoderma-Fusarium interaction and manifestation of biological control. Australian Journal of Crop Science, 5: 1027–1038.

Tran, N.H. 2010. Using Trichoderma species for biological control of plant pathogens in Vietnam. Journal of ISSAAS, 16 (1): 1721.

Verma, M., S. Brar R. Tyagi R. Surampalli and J. Valero. 2007. Antagonistic fungi, Trichoderma spp.: Panoply of biologial control. Biochemical Engineering Journal, 37(1): 1–20.

Vinale, F., K. Sivasithamparam, E. L. Ghisalberti, R. Marra, S.L. Woo, and M. Lorito, 2008. Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry, 40: 1-10.

Vipul K, S. Mohammad, S. P. Muksesh and S. Sonika Anuradha. 2014. Role of Secondary Metabolites Produced by Commercial Trichoderma Species and their Effect against Soil Borne Pathogens. Biosciences Journal, 3: 108.

Vos C.M.F., K. DeCremer, B.P.A. Cammue and B. DeConinck, 2015. The toolbox of Trichoderma spp. in biocontrol of Botrytis cinerea disease. Molecular Plant Pathology, 16 (4): 400–412.

Windham M.T., R. Elad and R. Baker. 1986. A mechanism for increased plant growth induced by Trichoderma spp. Phytopatholgy, 76: 518-521.

Yedidia I., N. Benhamou, Y. Kapulnik and I.. Chet. 2000. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiology and Biochemistry, 38: 863–873.

DOI: https://doi.org/10.33866/phytopathol.034.01.0767


  • There are currently no refbacks.

Copyright (c) 2022 aoumria merzoug

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Pakistan Journal of Phytopathology
ISSN: 1019-763X (Print), 2305-0284 (Online).
© 2013 Pak. J. Phytopathol. All rights reserved.