Mamoona Hassan, Naureen Akhtar, Muhammad Riaz, Salik N. Khan, Muhammad Shakeel, Ateeq Tahir


The application of various strategies is being used to manage the Plant diseases.  These strategies are used for the management of plant diseases by applying the cultural, genetical, chemical and biological controls. The biological control approaches are getting more importance on account of their less expensive and environmental friendly usage.  Therefore, the research is conducted to evaluate the anti-microbial activity of Nigella sativa seed oil for the management of the most common plant pathogenic gram -ve bacteria pseudomonas and burkholderia.  The isolated bacterias are being mentioned here with FCBP reference like Pseudomonas syringae pv syringae (FCBP009), P. Syringae pv populans (FCBP010), P. Syringae (FCBP405), Burkholderia pseudomallei (FCBP036; FCBP350; FCBP460) and B. Glumae (FCBP459) were collected from infected fruit/seed. The above mentioned bacterial strains were examined by using concentrations (10, 40, 60, 100 and 200 ppm) of Nigella sativa seed oil, ampicillin and streptomycin antibiotics. After investigation, the study found that Nigella sativa maximum inhibition (65.0 mm) were recorded at 200 ppm concentration in assessment of B. Glumae (FCBP459) pathogen. Conversely, the minimum inhibition (20.25 mm) were recorded at the similar concentration in assessment of P. syringae pv. syringae (FCBP405). Particularly, the present research observes that the antibiotic drugs use against the above mentioned bacteria have shown the great variation in resistance. This research suggests to use of antibacterial materials from biological origin in managing these disease-causing bacteria.


Antibiotics, black seed oil, characterization, enzymatic activity, phytopathogens.

Full Text:



Akova,M. 2008.Sulbactam-containing β-lactamase inhibitor combinations. Clinical Microbiology and Infection, 14: 185-188.

Al-Ghamdi, M. 2001. The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. Journal of Ethnopharmacology, 76: 45-48.

Aljabre, S. H., O. M. Alakloby and M. A. Randhawa. 2015. Dermatological effects of Nigella sativa. Journal of Dermatology & Dermatologic Surgery, 19: 92-98.

Bassolé, I. H. N. and H. R. Juliani. 2012. Essential oils in combination and their antimicrobial properties. Molecules, 17: 3989-4006.

Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods a review. International Journal of Food Microbiology, 94: 223-253.

Coleman, D. 1986. The role of microfloral and faunal interactions in affecting soil processes, Microfloral and faunal interactions in natural and agro-ecosystems. Springer, 3:317-348.

Cooper, M., R. Keeney, S. Lyons and E. Cheatle. 1979. Synergistic effects of ampicillin-aminoglycoside combinations on group B streptococci. Antimicrobial agents and Chemotherapy, 15: 484-486.

Dadgar, T., M. Asmar, A. Saifi, M. Mazandarani, H. Bayat, A. Moradi, M. Bazueri and E. Ghaemi. 2006. Antibacterial activity of certain Iranian medicinal plants against methicillin-resistant and sensitive Staphylococcus aureus. Asian Journal of Plant Sciences, 5: 861-866.

Déjean, G., S. Blanvillain‐Baufumé, A. Boulanger, A. Darrasse, T. D. de Bernonville, A. L. Girard, S. Carrére, S. Jamet, C. Zischek and M. Lautier. 2013. The xylan utilization system of the plant pathogen Xanthomonas campestris pv campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts. New Phytologist, 198: 899-915.

Dwyer, D. J., M. A. Kohanski, B. Hayete and J. J. Collins. 2007. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Molecular Systems Biology, 3: 91.

Francis, V. A., A. Zorzano and A. A. Teleman. 2010. dDOR is an EcR coactivator that forms a feed-forward loop connecting insulin and ecdysone signaling. Current Biology, 20: 1799-1808.

Gali-Muhtasib, H., N. El-Najjar and R. Schneider-Stock. 2006. The medicinal potential of black seed (Nigella sativa) and its components. Advances in Phytomedicine, 2: 133-153.

Gormez, A., F. Sahin, M. Gulluce and I. Aslan. 2013. Identification and characterization of Pseudomonas syringae isolated from apricot trees in the erzurum province of Turkey and evaluation of cultivar reaction. Journal of Plant Pathology, 3: 525-532.

Green, S., D. J. Studholme, B. E. Laue, F. Dorati, H. Lovell, D. Arnold, J. E. Cottrell, S. Bridgett, M. Blaxter and E. Huitema. 2010. Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. Public Library of Science, 5: 1020-10224.

Grujic‐Jovanovic, S., H. D. Skaltsa, P. Marin and M. Sokovic. 2004. Composition and antibacterial activity of the essential oil of six Stachys species from Serbia. Flavour and Fragrance Journal, 19: 139-144.

Ivnitski, D., I. Abdel-Hamid, P. Atanasov and E. Wilkins. 1999. Biosensors for detection of pathogenic bacteria. Biosensors and Bioelectronics, 14: 599-624.

Jabeen, R.,T. Iftikhar and H. Batool. 2012. Isolation, characterization, preservation and pathogenicity test of Xanthomonas oryzae pv. oryzae causing BLB disease in rice. Pakistan J. Bot, 44: 261-265.

Kaji, H. and A. Kaji. 1965. Specific binding of sRNA to ribosomes: effect of streptomycin. Proceedings of the National Academy of Sciences of the United States of America, 54: 213.

Kordali, S., R. Kotan, A. Mavi, A. Cakir, A. Ala and A. Yildirim. 2005. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils. Journal of Agricultural and Food Chemistry, 53: 9452-9458.

Lee, D. H., J.-B. Kim, J.-A. Lim, S.-W. Han and S. Heu. 2014. Genetic diversity of Pectobacterium carotovorum subsp. brasiliensis isolated in Korea. The plant pathology journal, 30: 117.

Lelliott, R. A. and D. E. Stead. 1987. Methods for the diagnosis of bacterial diseases of plants. Blackwell Scientific Publications, p216.

Mathabe, M., R. Nikolova, N. Lall and N. Nyazema. 2006. Antibacterial activities of medicinal plants used for the treatment of diarrhoea in Limpopo Province, South Africa. Journal of Ethnopharmacology, 105: 286-293.

McManus, P. S., V. O. Stockwell, G. W. Sundin and A. L. Jones. 2002. Antibiotic use in plant agriculture. Annual review of phytopathology, 40: 443-465.

Nazzaro, F., F. Fratianni, L. De Martino, R. Coppola and V. De Feo. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6: 1451-1474.

Prakash, A., D. Thavaselvam, A. Kumar, A. Kumar, S. Arora, S. Tiwari, A. Barua and K. Sathyaseelan. 2014. Isolation, identification and characterization of Burkholderia pseudomallei from soil of coastal region of India. Springerplus, 3: 438.

Rančić, A., M. Soković, J. Vukojević, A. Simić, P. Marin, S. Duletić-Laušević and D. Djoković. 2005. Chemical composition and antimicrobial activities of essential oils of Myrrhis odorata (L.) Scop, Hypericum perforatum L and Helichrysum arenarium (L.) Moench. Journal of Essential Oil Research, 17: 341-345.

Rico, A., R. Jones and G. M. Preston. 2009. Adaptation to the plant apoplast by plant pathogenic bacteria. Plant pathogenic bacteria: genomics and molecular biology: 63-89.

Sebiomo, A., A. Awofodu, A. Awosanya, F. Awotona and A. Ajayi. 2011. Comparative studies of antibacterial effect of some antibiotics and ginger (Zingiber officinale) on two pathogenic bacteria. Journal of Microbiology and Antimicrobials, 3: 18-22.

Sharma, H. and R. Mutharasan. 2013. Review of biosensors for foodborne pathogens and toxins. Sensors and actuators B: Chemical, 183: 535-549.

Shenge, K., R. Mabagala, C. Mortensen, D. Stephan and K. Wydra. 2007. First report of bacterial speck of tomato caused by Pseudomonas syringae pv. tomato in Tanzania. Plant disease, 91: 462-462.

Singh, G., P. Marimuthu, C. S. de Heluani and C. Catalan. 2005. Chemical constituents and antimicrobial and antioxidant potentials of essential oil and acetone extract of Nigella sativa seeds. Journal of the Science of Food and Agriculture, 85: 2297-2306.

Soković, M., J. Glamočlija, P. D. Marin, D. Brkić and L. J. Van Griensven. 2010. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules, 15: 7532-7546.

Stojković, D., J. Glamočlija, A. Ćirić, M. Nikolić, M. Ristić, J. Šiljegović and M. Soković. 2013. Investigation on antibacterial synergism of Origanum vulgare and Thymus vulgaris essential oils. Archives of Biological Sciences, 65: 639-643

Tallury, P., A. Malhotra, L. M. Byrne and S. Santra. 2010. Nanobioimaging and sensing of infectious diseases. Advanced drug delivery reviews, 62:424-437.

Toth, I. K., K. S. Bell, M. C. Holeva and P. R. Birch. 2003. Soft rot erwiniae: from genes to genomes. Molecular Plant Pathology, 4:17-30.

Vidaver, A. K. 2002. Uses of antimicrobials in plant agriculture. Clinical infectious diseases, 34: 107-110.

Welbaum, G. E., A. V. Sturz, Z. Dong and J. Nowak. 2004. Managing soil microorganisms to improve productivity of agro-ecosystems. Critical Reviews in Plant Sciences, 23: 175-193.



  • There are currently no refbacks.

Copyright (c) 2020 Muhammad Riaz

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Pakistan Journal of Phytopathological
ISSN: 1019-763X (Print), 2305-0284 (Online).
© 2013 Pak. J. Phytopathol. All rights reserved.