RECENT APPROACHES FOR MANAGEMENT OF TOMATO FUSARIUM WILT

Muhammad E.H. Ahmed, Muhammad A.G. Kararah, Khairy A.M.M. Abada, Hala. A.M. Eldakar

Abstract


Many fungal pathogens were isolated from tomato roots of plants appearing wilt symptoms. Fusarium oxysporum (FO) isolates were selected, purified, tested for their pathogenicity and identifying the formae speciales of the highest virulent one. Among the 17 isolates, 9 isolates caused root-rot, 5 resulted in wilt symptoms and 3 were un-pathogenic. The highest virulent isolate of FO, specialized in causing tomato wilt, was then named Fusarium oxysporum Schlect f. sp. lycopersici (FOL). Significant reduction to the linear growth and conidial germination of FOL was obtained by the culture filtrate of Trichoderma bioagents, compost tea, and the non-pathogenic isolates of FO in comparison with control treatment. The bi-combination of Trichoderma asperellum (TA), T.harzianum (TH), cow dung compost (CDC), and the un-pathogenic isolate of FO lowered the infection by the disease and increased crop parameters significantly. However, fungicide Maxim was the superior treatment in lowering the severity of the disease and increasing crop parameters. Total phenolic compounds, photosynthetic pigments and vitamin-c considerably increased in tomato plants of Trichoderma treated plants, compost and un-pathogenic isolate of FO compared to the control.


Keywords


Tomato; Compost; Fusarium wilt; Disease control; Trichoderma bioagents; Fruit yield; Maxim Phenolic compounds; Photosynth's pigments; Vitamin-C.

Full Text:

PDF

References


Abada, K., A. Attia and M. Zyton. 2018. Management of pepper Verticillium wilt by combinations of inducer chemicals for plant resistance, bacterial bioagents and compost. Journal of Applied Biotechnology, 5: 117-127.

Agrios, G. 2005. Plant Pathology Academic Press. San Diego, USA.

Akladious, S. A., G. S. Isaac and M. A. Abu-Tahon. 2014. Induction and resistance against Fusarium wilt disease of tomato by using sweet basil (Ocimum basilicum L) extract. Canadian Journal of Plant Science, 95: 689-701.

Akram, M. and Z. Yousefi. 2015. Biological control of Fusarium wilt of tomato (Solanum lycopersicum) by Trichoderma spp. as antagonist fungi. Research Trend, 7: 887-887.

Albersheim, P. and B. S. Valent. 1978. Host-pathogen interactions in plants. Plants, when exposed to oligosaccharides of fungal origin, defend themselves by accumulating antibiotics. The Journal of Cell Biology, 78: 627-643.

Amini, J. and D. Sidovich. 2010. The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. Journal of plant protection research, 50: 172-178.

Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology, 24: 1-10.

Muhammad, B.L., A. Rakan and N. Faeza. 2019. Biological control of Fusarium wilt in tomato by entophytic rhizobacteria. Energy Procedia, 157: 171-179.

Biswal, G. A. S. D. 2020. Eco-friendly management of fungal wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici Gayatri. Journal of Plant Pathology and Microbiology, 12: 529-535.

Booth, C. 1971. The genus Fusarium. Commonwealth Mycological Institute, Kew, UK.

Brian, P. and H. Hemming. 1945. Gliotoxin, a fungistatic metabolic product of Trichoderma viride. Annals of Applied Biology, 32: 214-220.

Carmona, S. L., D. Burbano-David, M. R. Gómez, W. Lopez, N. Ceballos, J. Castaño-Zapata, J. Simbaqueba and M. Soto-Suárez. 2020. Characterization of pathogenic and nonpathogenic Fusarium oxysporum isolates associated with commercial tomato crops in the Andean region of Colombia. Pathogens, 9: 70-78.

Christensen, A. B., P. L. Gregersen, J. Schröder and D. B. Collinge. 1998. A chalcone synthase with an unusual substrate preference is expressed in barley leaves in response to UV light and pathogen attack. Plant Molecular Biology, 37: 849-857.

Domsch, K. H., W. Gams and T.H. Anderson. 1980. Compendium of soil fungi. Volume 1. Academic Press London.

El-Mohamedy, R. S., H. Jabnoun-Khiareddine and M. Daami-Remadi. 2014. Control of root rot diseases of tomato plants caused by Fusarium solani, Rhizoctonia solani and Sclerotium rolfsii using different chemical plant resistance inducers. Tunisian Journal of Plant Protection, 9: 56-61.

Elshahawy, I. E. and R. S. El-Mohamedy. 2019. Biological control of Pythium damping-off and root-rot diseases of tomato using Trichoderma isolates employed alone or in combination. Journal of Plant Pathology, 101: 597-608.

El-Sheekh, M. M., M. A. Deyab, R. S. Hasan, S. E. Abu Ahmed and A. Y. Elsadany. 2022. Biological control of Fusarium tomato-wilt disease by cyanobacteria Nostoc spp. Archives of Microbiology, 204: 116-122.

Fisher, R. A. 1948. Statistical Methods 6th ed. Iowa State Univ. Press, Ames, Iowa, USA.

García-Enciso, E. L., A. Benavides-Mendoza, M. L. Flores-López, A. Robledo-Olivo, A. Juárez-Maldonado and S. González-Morale. 2018. A molecular vision of the interaction of tomato plants and Fusarium oxysporum f. sp. lycopersici. Fusarium—Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers. Intech Open, Bridge Street. London.

Gilardi, G., S. Demarchi, M. L. Gullino and A. Garibaldi. 2014. Managing Phytophthora crown and root rot on tomato by pre-plant treatments with biocontrol agents, resistance inducers, organic and mineral fertilizers under nursery conditions. Phytopathologia Mediterranea, 53: 205-215.

Gilman, J. 1957. A manual of soil fungi Iowa State College Press. Anes, Iowa USA pp, 392.

Gónzalez, I., Y. Arias and B. Peteira. 2012. General aspects of the interaction Fusarium oxysporum f. sp. lycopersici-tomato. Protección vegetal, 27: 1-7.

Hassan, H. 2020. Biology and integrated control of tomato wilt caused by Fusarium oxysporum Lycopersici: A comprehensive review under the light of recent advancements. Journal of Botanical Research, 3: 84-99.

Hassanisaadi, M., G. H. Shahidi Bonjar, A. Hosseinipour, R. Abdolshahi, E. Ait Barka and I. Saadoun. 2018. Biological control of Pythium aphanidermatum, the causal agent of tomato root rot by two Streptomyces root symbionts. Agronomy, 11: 846-851.

Hodges, D. M., C. F. Forney and W. V. Wismer. 2001. Antioxidant responses in harvested leaves of two cultivars of spinach differing in senescence rates. Journal of the American Society for Horticultural Science, 126: 611-617.

Hunter, D., M. Foster, J. O. McArthur, R. Ojha, P. Petocz and S. Samman. 2011. Evaluation of the micronutrient composition of plant foods produced by organic and conventional agricultural methods. Critical reviews in food science and nutrition, 51: 571-582.

Islam, M. T., B. R. Lee, H. Lee, W. J. Jung, D. W. Bae and T. H. Kim. 2019. p-Coumaric acid induces jasmonic acid-mediated phenolic accumulation and resistance to black rot disease in Brassica napus. Physiological and Molecular Plant Pathology, 106: 270-275.

Jha, A., A. Kumar, S. Jamwal, R. Jamval and A. Jamwal. 2018. Integrated management of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici. Journal of Entomological and Zoolgical Studies, 6: 1338-1341.

Johnson, L. F., E. A. Curl, J. H. Bond and H. A. Fribourg. 1959. Methods for studying soil microflora-plant disease relationships. Minneapolis: Burgess Pub, Pennsylvania, USA.

Jones, J.B., T.A. Zitter, T.M. Momol and S.A. Miller. 2016. Compendium of tomato diseases and pests. Second Edition. The American Phytopathological Society, APS Press, St. Paul, USA.

Khalil, I. and K. El-Mghrabia. 2010. Biological control of Fusarium dry rot and other potato tuber diseases using Pseudomonanas fluorescens and Enterobacter cloacae. Biological Control, 53: 280-284.

Koyyappurath, S. 2015. Histological and molecular approaches for resistance to Fusarium oxysporum f.sp. radicis-vanillae, causal agent of root and stem rot in Vanilla spp. (Orchidaceae). Université de la Reunión, France. pp. 227.

Kumar, S., M. M. Abedin, A. K. Singh and S. Das. 2020. Role of phenolic compounds in plant-defensive mechanisms. Plant Phenolics in Sustainable Agriculture, 1: 517-532.

López-Zapata, S. P., D. J. García-Jaramillo, W. R. López and N. Ceballos-Aguirre. 2021. Tomato (Solanum lycopersicum L.) and Fusarium oxysporum f. sp. lycopersici interaction. A review. Revista UDCA Actualidad and Divulgación Científica, 24: 1-08.

Manikandan, R., D. Saravanakumar, L. Rajendran, T. Raguchander and R. Samiyappan. 2010. Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biological control, 54: 83-89.

Metwally, R. and S. Al‐Amri. 2020. Individual and interactive role of Trichoderma viride and Arbuscular mycorrhizal fungi on growth and pigment content of onion plants. Letters in Applied Microbiology, 70: 79-86.

Metzner, H., H. Rau and H. Senger. 1965. Untersuchungen zur synchronisierbarkeit einzelner pigmentmangel-mutanten von Chlorella. Planta, 32: 186-194.

Morsy, E. M., K. Abdel-Kawi and M. Khalil. 2009. Efficiency of Trichoderma viride and Bacillus subtilis as biocontrol agents against Fusarium solani on tomato plants. Egyptian Journal of Phytopathology, 37: 47-57.

Murugan, L., N. Krishnan, V. Venkataravanappa, S. Saha, A. Mishra, B. Sharma and A. Rai. 2020. Molecular characterization and race identification of Fusarium oxysporum f. sp. lycopersici infecting tomato in India. Biotechnology, 10: 1-12.

Nel, B., C. Steinberg, N. Labuschagne and A. Viljoen. 2006. The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing fusarium wilt of banana. Plant Pathology, 55: 217-223.

Nicholson, R. L. and R. Hammerschmidt. 1992. Phenolic compounds and their role in disease resistance. Annual review of phytopathology, 30: 369-389.

Nofal, A., M. A. El-Rahman, T. Abdelghany and M. Abd El-Mongy. 2021. Mycoparasitic nature of Egyptian Trichoderma isolates and their impact on suppression Fusarium wilt of tomato. Egyptian Journal of Biological Pest Control, 31: 1-8.

Nogués, S., L. Cotxarrera, L. Alegre and M. I. Trillas. 2002. Limitations to photosynthesis in tomato leaves induced by Fusarium wilt. New Phytologist, 12: 461-470.

Okungbowa, F. and H. Shittu. 2014. Fusarium wilts: An overview. Environmental Research Journal, 6: 83-102.

Osbourn, A. E. 1996. Preformed antimicrobial compounds and plant defense against fungal attack. The Plant Cell, 8: 1821-1828.

Panina, Y., D.R. Fravel, C.J. Baker and L.A. Shcherbakova. 2007. Biocontrol and plant pathogenic Fusarium oxysporum-induced changes in phenolic compounds in tomato leaves and roots. Journal of Phytopathology, 155: 457–481.

Prasom, P., P. Sikhao and P. Koohakan. 2017. In vitro study of endophytic bacteria isolated from tomato plant against Fusarium oxysporum. International Journal of Agricultural Technology, 13: 1217-1230.

Rifai, M. A. 1969. A revision of the genus Trichoderma. Mycological Progress, 116: 1-56.

Shalaby, S. and B. A. Horwitz. 2015. Plant phenolic compounds and oxidative stress: integrated signals in fungal–plant interactions. Current genetics, 61: 347-357.

Singh, V. K., H. B. Singh and R. S. Upadhyay. 2017. Role of fusaric acid in the development of ‘Fusarium wilt’symptoms in tomato: Physiological, biochemical and proteomic perspectives. Plant physiology and biochemistry, 118: 320-332.

Snedecor, G. W. and W. G. Cochran. 1989. Statistical methods, 8thEdn. Ames: Iowa State University Press, 54: 71-82.

Srinivas, C., D. Nirmala, K. Narasisha-Murthy, C.D. Mohan, T.R. Lakshmeesha, B. Singh, N.K. Kalagatur, S.R. Niranjana, A. Hashem, A.A. Alqarawi, B. Tabassum, E.F. Abd-Allah, S. Chandra-Nayaka and R.K. Srivatava. 2010. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity: A review. Saudian Journal of Biological Sciences, 7: 1315-1324.

Termorshuizen, A., E. Van Rijn, D. Van Der Gaag, C. Alabouvette, Y. Chen, J. Lagerlöf, A. Malandrakis, E. Paplomatas, B. Rämert and J. Ryckeboer. 2007. Suppressiveness of 18 composts against 7 pathosystems: variability in pathogen response. Soil Biology and Biochemistry, 38: 2461-2477.

Ulloa, M., R. B. Hutmacher, R. M. Davis, S. D. Wright, R. Percy and B. Marsh. 2006. Breeding for Fusarium wilt race 4 resistance in cotton under field and greenhouse conditions. Journal of Cotton Science, 10: 129-136.

Vilasinee, S., C. Toanuna, R. McGovern and S. Nalumpang. 2019. Expression of pathogenesis-related (PR) genes in tomato against Fusarium wilt by challenge inoculation with Streptomyces NSP3. International Journal of Agricultural Technology, 15: 157-170.

Wang, B., H. Yu, Y. Jia, Q. Dong, C. Steinberg, C. Alabouvette, V. Edel-Hermann, H. C. Kistler, K. Ye and L. J. Ma. 2020. Chromosome-scale genome assembly of Fusarium oxysporum strain Fo47, a fungal endophyte and biocontrol agent. Molecular Plant-Microbe Interactions, 33: 1108-1111.

Weltzien, H. C. 1991. Biocontrol of foliar fungal diseases with compost extracts. In: Microbial Ecology of Leaves. Springer, New York, USA. pp. 430-450.

Zieslin, N. and R. Ben-Zaken. 1993. Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant physiology and biochemistry, 31: 333-339.




DOI: https://doi.org/10.33866/phytopathol.035.02.0839

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 mohamed elnobey

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

      
   
Pakistan Journal of Phytopathology
ISSN: 1019-763X (Print), 2305-0284 (Online).
© 2013 Pak. J. Phytopathol. All rights reserved.