USE OF GENE SEQUENCING, SOIL CHEMICAL PROPERTIES AND MICROBIAL ANALYSIS TO CONFIRM THE NATURE OF THE SUGARCANE DISEASE PHYTOPLASMAS IN THAILAND

Parisatcha Sangsuwan, Janejira Detraksa, Napatsorn Notesiri, Matthew Dickinson

Abstract


Phytoplasmas are a group of plant pathogens that reduce yield in various plants including many crops, shrubs, and tree species. They have been classified into various 16Sr groups or ‘Candidatus Phytoplasma species’ based primarily on the sequences of their 16S rRNA genes. However, other non-ribosomal sequences are often used to fine-tune their classifications. This research aimed to clarify the categorization of the sugarcane phytoplasmas that cause sugarcane white leaf and sugarcane grassy shoot symptoms in Thailand and determine whether they are different strains, based on non-16S ribosomal genes. Forty samples from plants exhibiting both sugarcane symptoms and from symptomless sugarcane were collected and PCR amplifications were done with primers for the 50S rRNA Ser and SecA genes moreover soil samples from non-symptom and symptom fields were collected for soil chemical properties and rhizospheric microorganism analysis. The phylogenetic tree results revealed that isolates displaying both symptom types grouped together based on all three sets of primers, including with isolates from other countries. Additionally, soil chemical properties and rhizospheric microorganism analysis results showed that soil chemical factors and rhizospheric microorganisms did not appear to correlate with the differences in symptoms. It is concluded that the two sugarcane symptoms are caused by the same Phytoplasma strain and that other, as yet unidentified factors, are responsible for thisPhytoplasma giving different symptoms in different situations. This is the first evidence of soil chemical properties and rhizospheric microorganism not correlating with the diverse symptoms. As for further study, unidentified factors will be studied including quarantine methods to control the symptoms.


Keywords


sugarcane white leaf, sugarcane grassy shoot, Phytoplasma, phylogenetic tree, soil property

Full Text:

PDF

References


Abdel-Lateif1 K.S., A.H. Omar and F.M. Abdel El-Zanaty. 2016. Phylogenetic analysis of 23S rRNA gene sequences of some Rhizobium leguminosarum isolates and their tolerance to drought. African Journal of Biotechnology, 15: 1871-1876.

Abesysinghe S., P.D. Abesinghe, C. Kanatiwela-De Silva, P. Udagama, K. Waraeichanee, N. Al-Jelfar, P. Kawicha and M. Dickinson 2016. Refinement of the taxonomic structure of 16SrXI and 16SrXIVPhytoplasmas of Gramineous plants using Multilocus sequence typing. Plant Disease, 100: 2001-2010. DOI:10.1094/PDIS-02-16-0244-RE

Abu-Ahmad Y., L. Costet, J.H. Daugrois, S. Nibouche, P. Letourmy, J.C. Girard and P. Rott 2007. Multilocus sequence typing confirms the close genetic interrelatedness of three distinct flavescence doreePhytoplasma strain clusters and group 16SrVPhytoplasmas infecting grapevine and alder in Europe. Applied and Environmental Microbiology, 73: 4001-10. DOI:10.1128/AEM.02323-06

Arnaud G., S. Malembic-Maher, P. Salar, P. Bonnet, M. Maizner, C. Marcone, E. Boudon-Padieu and X. Foissac. 2007. Multilocus sequence typing confirms the close genetic interrelatedness of three distinct flavescence doreePhytoplasma strain clusters and group 16SrVPhytoplasmas infecting grapevine and alder in Europe. Applied and Environmental Microbiology, 73: 4001-10. DOI:10.1128/AEM.02323-06

Baker, G., J.J. Smith and D.A. Cowan. 2003. Review and re-analysis of Domain-specific 16S primers, Journal of Microbiology Methods, 55(3): 541-555.

Bennett J.S., E.R. Watkins, K.A. Jolley, O.B. Harrison and Maiden M.C.J. 2014. Identifying Neisseria species by use of the 50S Ribosomal protein L6 (rplF). Journal of Clinical Microbiology, 5: 1375–1381. DOI:10.1128/JCM.03529-13

Bonkowski M, Villenave C, Griffiths B. 2009. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil, 321: 213–233. DOI: 10.1007/s11104-009-0013-2

Bray R.H. and L.T. Kurtz. 1945. Determination of total organic and available forms of phosphorus in soils. Soil Science, 59: 39-45. DOI: 10.1097/00010694-194501000-00006.

Chaudhari S., D. Khare, S.C. Patil, S. Sundravadana, M.T. Variath, H.K. Sudini, S.S. Manohar, R.S. Bhat and J. Pasupuleti. 2019. Genotype × Environment Studies on Resistance to Late Leaf Spot and Rust in Genomic Selection Training Population of Peanut (Arachis hypogaea L.). Frontier. Plant Science, 10:1338. DOI: 10.3389/fpls.2019.01338

Cieslinska M., E. Hennig, D. Kruczynska and A. Beraccini. 2015. Genetic diversity of ‘CandidatusPhytoplasma mali’ strains in Poland. Phytopathologia Mediterranea, 54(3): 477–487.

Deng S. and C. Hiruki. 1991. Amplifcation of 16S rRNA genes from culturable and nonculturable mollicutes. Journal of Microbiological Methods 14: 53–56.

Eickbush T.H. and D.G. Eickbush. 2007. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175: 477-485

Fraser C.M., D.R. Timothy and E.N. Karen. 2004. Microbial Genomes, Humana Press, Totowa, NJ, 536pp. ISBN: 1-58829-189-8 Transactions of the Royal Society of Tropical Medicine and Hygiene.

Haapalainen M., S. Latvala, A. Wickström, J. Wang, M. Pirhonen and A.I. Nissinen. 2019. A novel haplotype of ‘Candidatus Liberibacter solanacearum’ found in Apiaceae and Polygonaceae family plants. European Journal of Plant Pathology, 1: 21-34.

Hodgetts J., N. Boonham, R. Mumford, N. Harrison and M. Dickinson. 2008.Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of 'CandidatusPhytoplasma'. International Journal of Systematics and Evolutionary Microbiology, 58: 1826-1837. DOI: 10.1099/ijs.0.65668-0.

Hunt D.E., V. Klepac-Ceraj, S.G. Acinas, C. Gautier, S. Bertilsson and M.F. Polz. 2006. Evaluation of 23S rRNA PCR primers for use in phylogenetic studies of bacterial diversity. Applied and Environmental Microbiology, 72: 2221-2225. DOI: 10.1128/AEM.72.3.2221-2225.2006.

Kakizawa S., K. Oshima, T. Sawayahangi, T. Kuboyama, S. Miyata, H.Y. Jung, H. Nishigawa, T. Tsuchizaki, S. Miyata, M. UgakiI and S. Namba. 2001. Cloning and expression analysis of Phytoplasma protein translocation genes. Molecular Plant-Microbe Interactions, 14: 1043–1050. DOI: 10.1094/MPMI.2001.14.9.1043.

Kawasaki A, C.R. Warren and M.A. Kertesz. 2016. Specific influence of white clover on the rhizosphere microbial community in response to polycyclic aromatic hydrocarbon (PAH) contamination. Plant Soil, 401: 365–379. doi: 10.1007/s11104-015-2756-2. WOS:000372947800026

Kirdat K., B. Tiwarekar, V. Thorat, S. Sathe, Y. Shouche and N. Yadav. 2021. A. 'CandidatusPhytoplasma sacchari’, a novel taxon - associated with Sugarcane Grassy Shoot (SCGS) disease. International Journal of Systematics and Evolutionary Microbiology, 71: 004591 DOI: 10.1099/ijsem.0.004591

Larfeil C., G., Barrult G. Dechamp and G. Guillaume-Ensat. 2010. Assessment of sunflower genotype tolerance to Phoma macdonaldii. Oil seed and Fats crops and Lipids, 17(3): 161–166. DOI: 10.1051/ocl.2010.0304

Lee I.M., R.W. Hammond, R.E. Davis and D.E. Gundersen. 1993. Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasma like organisms. Phytopathology, 83: 834–842.

Li Y., C.G. Piao, G. Z. Tian, Z.X. Liu, M.W. Guo, C.L. Lin and X.Z. Wang. 2014. Multilocus sequences confirm the close genetic relationship of fourPhytoplasmas of peanut witches'-broom group 16SrII-A. Journal of Basic Microbiology, 54: 818-827. DOI:10.1002/jobm.201300140

Mahoney A.K., C. Yin and S.H. Hulbert. 2017. Community structure, species variation and potential function of rhizophere-associated bacteria of different winter wheat (Triticum aestivum) cultivars. Frontiers in Plant Science, 8: 132. DOI=10.3389/fpls.2017.00132

Müller D.B., C. Vogel, Y. Bai and J.A. Vorholt. 2016. The plant microbiota: Systems-level insights and perspectives. Annual Reviews in Genetics, 50: 211-234. DOI: 10.1146/annurev-genet-120215-034952.

Nasare K., A. Yadav, A.K. Singh, K.B. Shivasharranappa, Y.S. Nerkar and V.S. Reddy. 2007. Molecular and symptom analysis reveal the presence of newPhytoplasmas associated with Sugarcane grassy shoot disease in India. Plant Disease, 91: 1413-1418. DOI:10.1094/PDIS-91-11-1413

Nelson D.W. and L.E Sommers. 1996. Total carbon, organic carbon, and organic matter. In Sparks, D.L., et al., Eds., Methods of Soil Analysis. Part 3, SSSA Book Series, Madison, 961-1010.

Nithya K., K. Kirdat, P. Balasubramaniam, B. Tiwarekar, A. Tiwari, G. Rao, A. Nikpay, T. Hoat, R. Viswanathan and A. Yadav. 2023. Chapter 8 - Updates on Phytoplasma diseases associated with sugarcane in Asia. In Phytoplasma Diseases in Asian Countries,Phytoplasma Diseases of Major Crops, Trees, and Weeds, Academic Press, Volume 2, Pages 215-232, ISBN 9780323918978, DOI: 10.1016/B978-0-323-91897-8.00008-3.

Pei A., C.W. Nossa, P. Chokshi, M.J. Blaser, L. Yang, D.M. Rosmarin, and Z. Pei. 2009. Diversity of 23S rRNA genes within individual prokaryotic genomes. PLoS One, 4:e5437.

DOI: 10.1371/journal.pone.0005437

Pei A., H. Li, W.E. Oberdorf, A.V. Alekseyenko, T. Parsons, L. Yang, E.A. Gerz, Lee P., C. Xiang, C.W. Nossa and Z. Pei. 2012. Diversity of 5S rRNA genes within individual prokaryotic genomes. FEMS Microbiology Letters, 335(1): 11-8. DOI: 10.1111/j.1574-6968.2012.02632.x.

Petrović B., S. Äurić, M. Vasić, V. Tunguz and R. Pokluda. 2018. Effect of bean cultivars on soil microorganisms. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. 66: 155–60. DOI: 10.11118/actaun201866010155.

Pilet F., R.N. Quaicoe, I.J. Osagie, vM. Freire and X. Foissac. 2019. Multilocus Sequence Analysis Reveals Three Distinct Populations of "CandidatusPhytoplasma palmicola" with a Specific Geographical Distribution on the African Continent. Applied and Environmental Microbiology, 85: DOI: 10.1128/AEM.02716-18.

Potts A.S. and M.D. Hunter. 2021. Unraveling the roles of genotype and environment in the expression of plant defense phenotypes. Ecology and Evolution, 11: 8542–8561. DOI: 10.1002/ece3.7639

Quaglino F., M. Kube, M. Jawhari, Y. Abou-Jawdah, C. Siewert, E. Choueiri, H. Sobh, P. Casati, R. Tedeschi, M.M. Lova, A. Alma and P.A. Bianco. 2015. 'CandidatusPhytoplasma phoenicium' associated with almond witches'-broom disease: from draft genome to genetic diversity among strain populations. BMC Microbiology, 15: 148.

Quoc N.B., N.T.T. Xuan, N.D.N. Phuong, H.T.T. Trang, N.N.B. Chau, C.A. Duong and M. Dickinson. 2021. Development of loop mediated isothermal amplification assays for the detection of sugarcane white leaf disease, Physiological and Molecular Plant Pathology, 113: 101595.

Richardson J.E., M.F. Fay, Q.C.B. Cronk, D. Bowman, M.W. Chase. 2000. A Phylogenetic analysis of Phamnaceae using rbcl and trnl-f plastid DNA sequences American Journal of Botany, 87: 1309–1324.

Sakuanrungsirikul S., T. Wongwarat, S. Sakot, T. Sansayawichai and S. Srisink. 2012. SecA, a New Marker for an Improved Detection Method. Outstanding research of Department of Agriculture.

Sangsuwan P. 2020. The role ofPhytoplasma effectors in plant development. PhD, University of Nottingham, United Kingdom.

Santoyo G. and D. Romero. 2005. Gene conversion and concerted evolution in bacterial genomes. FEMS Microbiology Reviews, 29: 169-183. DOI: 10.1016/j.femsre.2004.10.004.

Shaoshuai Y., L. Yong, R. Zhengguang, S. Chuansheng, L. Caili, P. Chungen and T. Guozhong. 2017. Multilocus sequence analysis for revealing finer genetic variation and phylogenetic interrelatedness of Phytoplasma strains in 16SrI group in China. Scientia Silvae Sinicae 53: 105-118. DOI:10.11707/j.1001-7488.20170312

Smart C.D., B. Schneider, C.L. Blomquist, L.T. Guerra, N.A. Harrison, U. Ahrens, K.H. Lorenz, E. Seemüller and B.C. Kirkpatrick. 1996.Phytoplasma-Specific PCR Primers Based on Sequences of the 16S-23S rRNA Spacer Region. Applied and Environmental Microbiology, 62: 2988–2993. DOI: 10.1128/aem.62.8.2988-2993.1996

Soil Survey Staff. 1996. Soil survey laboratory methods manual. Version No. 3.0. USDANRCS. Soil Survey Investigations Report No. 42. U.S. Govt. Print. Office, Washington, DC.

Tiwari K.L., S.K. Jadhav and S. Gupta. 2012. Modified CTAB Technique for Isolation of DNA from some Medicinal Plants. Research Journal of Medicinal Plants, 6 (1): 65-73.

Tkacz A., J. Cheema, G. Chandra, G. Alastair and S.P. Philip. 2015. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME Journal, 9: 2349–2359. DOI: 10.1038/ismej.2015.41

Viswanathan R., C. Chinnaraja, R. Karuppaiah, V.G. Kumar, J.J. Rooba and P. Malathi. 2011. Genetic diversity of sugarcane grassy shoot (SCGS)-phytoplasmas causing grassy shoot disease in India. Sugar Technology, 13: 220e228. DOI: 10.1007/s12355-011-0084-2

Walkley A.J. and I.A. Black. 1934. Estimation of soil organic carbon by the chromic acid titration method. Soil Science 37: 29-38.

Wang X.Y., W.F. Li, Y.K. Huang, R.Y. Zhang, Z.M. Luo, H.L. Shan, J. Yin, K. Shen, Y.M. Jia and Z.G. Bai. 2014. Analyses of the 16S-23S intergenic region of thePhytoplasma causing the sugarcane white leaf disease in Yunnan Province, China. Tropical Plant Pathology, 39: 184-188. DOI: 10.1590/S1982-56762014000200010

Wongkaew P., Y. Hanboonsong, P. Sirithorn, C. Choosia, S.Boonkrong, T. TinnangwattanaI, R. Kitchareonpanya, and S. Damak. 1997. Differentiation of Phytoplasmas associated with sugarcane and gramineous weed white leaf disease and sugarcane grassy shoot disease by RFLP and sequencing. Theoretical and Applied Genetics, 95: 660–663.

Yadav A., V. Thorat, S. Deokule, Y. Shouche, D.T. Prasad. 2017. New subgroup 16SrXI-FPhytoplasma strain associated with sugarcane grassy shoot (SCGS) disease in India. International Journal of Systematics and Evolutionary Microbiology, 67: 374-378. DOI: 10.1099/ijsem.0.001635.

Yin C., J.M. Casa Vargas, D.C. Schlatter, H.H. Christina, H.H. Scot and C.P. Timothy. 2021. Rhizosphere community selection reveals bacteria associated with reduced root disease. Microbiome, 9: 86. DOI: 10.1186/s40168-020-00997-5

Youssef S.A., S. Yasmin, S.H. Osama, S.T. Gehan and A.A. Shalaby. 2017. Universal and specific 16S-23Sr RNA PCR primers for identification of Phytoplasma associated with sesame in Egypt. International Journal of Advanced Research in Biological Sciences, 4: 191-200. ISSN: 2348-8069. 4. 191-200.




DOI: https://doi.org/10.33866/phytopathol.036.01.1053

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Parisatcha Sangsuwan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

      
   
Pakistan Journal of Phytopathology
ISSN: 1019-763X (Print), 2305-0284 (Online).
© 2013 Pak. J. Phytopathol. All rights reserved.
 Â